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Abstract

Constrained optimal stopping problems have been approached in recent literature by transform-
ing the problem into either an unconstrained problem, using Lagrange multipliers, or into a
stochastic optimal control problem, by introducing an auxiliary process. We focus on the second
approach here and explore a wider class of stochastic optimal control problems and their corre-
sponding Hamilton-Jacobi-Bellman PDEs. We also propose a relationship between constrained
optimal stopping problems, Monge-Ampère equations, martingale optimal transport and Sko-
rokhod embedding.
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Introduction

In this report we present some preliminary work on constrained optimal stopping and related
problems, and we outline some ideas which we intend to explore further in the course of a PhD
thesis.

An optimal stopping problem is to find the stopping time which maximises the expectation
of a certain quantity calculated from the path of a stochastic process. Typically, such a problem
is of the following form, as described in Chapter III.6 of [26]:

v(x) := sup
τ

Ex

!
M(Xτ ) +

" τ

0

L(Xt) dt+ sup
0≤t<τ

K(Xt)

#
,

for some functions M,L,K and a stochastic process (Xt)t≥0, where the supremum is taken over
all stopping times.

This type of problem has been well-studied and there are many techniques for its solution,
several of which are detailed in [26]. It is also worth noting that these problems have a financial
application, explained in Chapter VII of [26], as methods of pricing options and determining the
optimal exercise time for options.

Classical optimal stopping problems can be solved on either an infinite or a finite time hori-
zon, as described in [26]. However, adding a constraint on the expected value of the stopping
time poses an additional challenge. We will call a problem with such a constraint a constrained
optimal stopping problem, and it is this type of problem that we begin this report by studying.

The first example of a constrained optimal stopping problem which we are aware of in the
literature is the 1982 paper of Kennedy [20]. Since 2015, several new papers have appeared on
this type of problem, including [1,19,21,25]. A similar type of constrained problem is considered
by Bayraktar and Miller in [3], where the distribution of the stopping time is constrained to be
a given measure. We note that this problem may be related to the other problems and methods
which we are considering, and could be of interest to explore further in the future, but here we
concentrate on problems with a constraint on the expectation of the stopping time.

The study of constrained optimal stopping problems is financially motivated by mean-variance
investment strategies, as explained in the paper of Pedersen and Peskir [25]. In that paper,
the model for a stock price (Xt)t≥0 is taken to be a geometric Brownian motion: dXt =
σXt dBt+µXt dt, where B is a standard Brownian motion. A mean-variance investment strategy
is a simple strategy for maximising reward while minimising risk, using the expected value of X
as a proxy for reward and the variance of X as a proxy for risk. This can be formalised as a
constrained optimal stopping problem of finding either

sup
τ

Ex[Xτ ] subject to Varx(Xτ ) ≤ α or sup
τ

Varx[Xτ ] subject to Ex(Xτ ) ≤ β,

for some α,β > 0. The first of these formulations can be related to the optimal stopping problem
with expectation constraint described above.

There are two main strategies which have been successful for solving constrained optimal stop-
ping problems. Kennedy used Lagrange multipliers in [20] to transform the constrained problem
into an unconstrained optimal stopping problem, and Pedersen and Peskir used a similar method
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in [25], allowing them to solve the problem as a free boundary problem. Miller uses a second
method in [21], with Ankirchner, Klein and Kruse in [1] and Karnam, Ma and Zhang in [19] tak-
ing essentially the same approach. In these papers, the authors introduce an auxiliary process
to turn the constrained optimal stopping problem into a two-process stochastic optimal control
problem.

A stochastic optimal control problem is defined in Section 2.1 of [33] as follows. Let X be a
stochastic process defined by

dXt = µ(t,Xt,αt) dt+ σ(t,Xt,αt) dBt,

for some stochastic control process α, which is chosen from a set of admissible controls U . Then
the problem is to find the value function

v(t, x) := sup
α∈U

J(t, x,α),

where J is the expected value of a reward function depending on the path of the controlled
stochastic process X.

As stated in [33], the value function v solves a dynamic programming or Hamilton-Jacobi-
Bellman equation, which is a partial differential equation. Verifying that a function satisfies
the appropriate Hamilton-Jacobi-Bellman equation is a common method of finding a solution
to the corresponding stochastic control problem, and this approach is used in the papers [1, 21].
The appropriate notion of solution to these PDEs to use here is the viscosity solution, which we
define in Section 1.5, as described in [15].

In [21], Miller observes that the Hamilton-Jacobi-Bellman equation arising from the constrained
optimal stopping problem considered there is a Monge-Ampère type equation. The Monge-
Ampère equation is a non-linear PDE, a specific form of which is a key equation in the theory of
optimal transport, as detailed in [34] and [10]. Spiliotis and Karatzas have both proved stochastic
representation results for parabolic Monge-Ampère type equations in terms of stochastic optimal
control problems, in [32] and [18], respectively. However, we do not know of any such result for
the form of the Monge-Ampère equation which appears in optimal transport, and it would be
of interest to derive a stochastic representation result for more general Monge-Ampère equations.

Several recent papers have considered the problem of imposing an additional martingale con-
straint on the classical Monge-Kantorovich optimal transport problem, and we begin to explore
martingale optimal transport in this report. Suppose we wish to transport mass distributed
according to a measure µ to be distributed according to a second measure λ, while minimising
some cost function. Then the martingale version of this optimal transport problem imposes the
additional condition that we must have E[Y |X] = X, when Law(X) = µ and Law(Y ) = λ, as
described in [6].

A financial motivation for martingale optimal transport comes from model-free or robust pricing
of derivatives, as illustrated, for example, by Hobson and Klimmek in [16]. Traditionally, finan-
cial derivatives have been priced by first specifying a model which they follow, then calibrating
this model by using observed prices to estimate model parameters, as described in [29]. However,
choosing the right model is extremely difficult, and almost no model can account for extreme
changes in the market. Therefore, recent research in mathematical finance has explore model-free
pricing of derivatives, in which no model is specified, but bounds on the price can be obtained
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based only on observations. In [16], we see that this method of pricing can lead to a martingale
optimal transport problem.

We suggest that there may be a link between the financial setup here and the mean-variance
strategies discussed above, and that we might therefore expect a link between constrained op-
timal stopping and martingale optimal transport. Furthermore, in [6], Beiglböck and Juillet
showed a monotonicity principle for martingale optimal transport, analogous to the well-known
monotonicity result in the classical case. This monotonicity principle has some similarity to the
properties of optimal paths which we will observe for constrained optimal stopping problems.

Furthermore, in [5], Beiglböck, Henry-Labordère and Touzi make a connection between the
monotonicity property of martingale optimal transport and a Skorokhod embedding problem.
Skorokhod embedding problems are the final set of problems which we consider in this report.
As defined in [23], the embedding problem is to find a stopping time τ such that the law of Bτ

is a given measure. Since this problem was first introduced in 1961 by Skorokhod [30], many
different solutions have been posed, including those presented in [2,11,28]. In [4], the authors use
techniques from the theory of optimal transport to solve optimal Skorokhod embedding prob-
lems, which have the additional property that their solution must minimise a given functional of
the Brownian motion.

We believe that there exists an underlying connection between all of the classes of problems
which we consider in this report. We now outline the structure of the report.

In Chapter 1, we introduce a constrained optimal stopping problem, which we reformulate as a
stochastic optimal control problem. We solve this problem explicitly in the simplest case and
introduce the machinery of the dynamic programming principle and viscosity solutions, which
will allow us to approach more general problems in the future.

In Chapter 2, we note that the PDE arising from the stochastic control problem of Chapter
1 resembles a Monge-Ampère equation, which leads us to investigate stochastic representation
results for Monge-Ampère equations. We provide one preliminary result in this report and con-
jecture a more general set of results. We also point to a possible connection to the theory of
optimal transport, which we wish to investigate.

In Chapter 3, we introduce martingale optimal transport problems, compare them to classi-
cal optimal transport and give some results on these problems from the literature. In addition,
we define Skorokhod embedding problems and describe some of their basic features. We conclude
by proposing a connection which would tie martingale optimal transport and Skorokhod embed-
ding back to the Monge-Ampère equation, stochastic optimal control and constrained optimal
stopping problems.

The aim of this report is to introduce several related problems and present preliminary results,
while outlining opportunities for future avenues of research.
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Chapter 1

Constrained Optimal Stopping

The following optimal stopping problem with a constraint on the expected value of the stopping
time has been studied in recent papers including [1, 19, 21,25]:

Find sup
τ

Ex[f(Bτ )]

subject to Ex[τ ] ≤ K,
(1.0.1)

where (Bt)t≥0 is a standard Brownian motion and the supremum is taken over all stopping times.

In this problem, we have a reward function f : R → R, which depends only on the value of
the Brownian motion at the stopping time, and our aim is to maximise the expected reward.

Successful approaches to this problem have followed one of two main strategies. First, the
approach of Pedersen and Peskir in [25] is to use Lagrange multipliers to transform the con-
strained problem into an unconstrained free boundary problem, which can then be solved. The
second approach, which leads to the same solution, is to introduce an auxiliary process in order
to reformulate the problem as a stochastic optimal control problem. This approach is taken, for
example, by Miller in [21], where PDE methods are then used to arrive at the solution.

We focus now on the approach of Miller and, in this chapter of the report, we explain and
justify the approach that we will take to this type of problem, and we present some simple
examples, which we plan to build on in the future.

1.1 Stochastic Optimal Control

We aim to reformulate the constrained optimal stopping problem (1.0.1) as a stochastic optimal
control problem, by introducing an auxiliary process which can be chosen subject to some con-
straints, as in [21]. This procedure will give rise to the following two-process stochastic optimal
control problem:

Find sup
Z,τ

Ex[f(Bτ )]

subject to Zt + t is a martingale, Z0 = K, Zt ≥ 0 for all t ≤ τ.
(1.1.1)

Here, we proceed to show that problems (1.1.1) and (1.0.1) are in fact equivalent. First we
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verify that the optimal stopping time in (1.1.1) satisfies the expectation constraint in (1.0.1).
Then we show that the set of stopping times over which we optimise is the same in each problem.

Lemma 1.1.1. Let ((Zt)t≥0, τ) be a pair which solves (1.1.1). Then Ex[τ ] ≤ K < ∞.

Proof. Suppose that ((Zt)t≥0, τ) solves (1.1.1). Let us introduce the stopping time

TR := inf{t ≥ 0 : |Xt∧τ | ≥ R} ∧R, for any R > 0.

Then τ ∧ TR is a bounded stopping time. Since Zt + t is a martingale, the optional stopping
theorem (see e.g. Theorem 3.2 of [27]) gives us

E[Zτ∧TR
+ τ ∧ TR] = Z0.

So

E[τ ∧ TR] = Z0 − E[Zτ∧TR
]

≤ Z0 = K,
(1.1.2)

since τ ∧ TR ≤ τ implies that Zτ∧TR
≥ 0.

We now wish to take limits as R → ∞. Using the fact that, for x ∈ R2, R ∈ R,

|x| ≥ R ⇒ x2
1 ≥ R2

2
or x2

2 ≥ R2

2
,

we see that

TR ≥ min

$
inf

$
t ≥ 0 : |Bt∧τ | ≥

R√
2

%
, inf

$
t ≥ 0 : |Zt∧τ | ≥

R√
2

%
, R

%
.

By standard properties of Brownian motion, we know that

inf

$
t ≥ 0 : |Bt∧τ | ≥

R√
2

%
≥ inf

$
t ≥ 0 : |Bt| ≥

R√
2

%
−−−−→
R→∞

∞, a.s..

Furthermore, Zt∧τ is a super-martingale, stopped at 0, and so

inf

$
t ≥ 0 : |Zt∧τ | ≥

R√
2

%
= inf

$
t ≥ 0 : Zt∧τ ≥ R√

2

%
−−−−→
R→∞

∞, a.s..

Hence TR → ∞ almost surely, as R → ∞. Therefore, taking limits in the inequality (1.1.2), we
arrive at

E[τ ] ≤ K < ∞.

Note that, by the martingale representation theorem (see e.g. Theorem 4.3.4 of [24]), Zt + t
being a martingale is equivalent to

dZt = αt dBt − dt,

for some unique process α = (αt)t≥0 adapted to F = {Ft}t≥0, the natural filtration of B.

Lemma 1.1.2. The constrained optimal stopping problem (1.0.1) is equivalent to the stochastic
optimal control problem (1.1.1).
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Proof. We first claim that the filtrations generated by the processes B and Z are the same.

As noted above, we can write dZt = αt dBt − dt, for some process α adapted to the filtration
generated by B. This implies that Z is adapted to the filtration generated by B. Conversely, we
can see that B is adapted to the filtration generated by Z, by rearranging the expression. By
the definition of generated sigma algebras, we have that the two filtrations must be equal.

This implies that the set of all stopping times with respect to the filtration generated by B
is equal to the set of stopping times with respect to the filtration generated jointly by B and
any Z. The preceding lemma also tells us that the stopping times in both problems satisfy the
constraint E[τ ] ≤ K. Therefore, we take the supremum over the same set of stopping times in
both problems (1.0.1) and (1.1.1), and so the value function in problem (1.0.1) is equal to the
value function in (1.1.1).

In light of the above lemma, it is the stochastic optimal control problem (1.1.1) which we
investigate here.

We will only consider convex reward functions f here, because of the following result, which
tells us that, in this case, the solution to the stochastic optimal control problem must allow the
process to run for as long as possible. This allows us to fix the stopping time in the problem
to be the greatest time allowed by our constraints, thus simplifying the problem. Conversely,
if f is concave, the optimal strategy will always be to stop immediately, by the converse of the
following lemma. Once we have a good understanding of the solutions for convex f , we will be
interested to investigate reward functions which are neither globally convex nor globally concave.

Lemma 1.1.3. Let f : R → R be a convex function, B a Brownian motion and τ any stopping
time which satisfies the conditions for the optional stopping theorem to apply. Then, for any
ε > 0,

E[f(Bτ )] ≤ E[f(Bτ+ε)].

Proof. Let ε > 0 and suppose that τ satisfies the conditions of the optional stopping theorem
for the martingale B. Then

E[Bτ+ε|Fε] = Bτ .

Therefore, using the convexity of f and the conditional form of Jensen’s inequality, we have

E[f(Bτ )] = E [f (E[Bτ+ε|Fε])]

≤ E [E[f (Bτ+ε|Fε)]] , by Jensen’s inequality,

= E[f(Bτ+ε)].

From now on, we fix the reward function f to be a convex function. Recall that we have the
constraint Zt ≥ 0 for all t ≤ τ , for any stopping time τ . Therefore, by the above lemma, we have
that

sup
Z,τ

Ex[f(Bτ )] = sup
Z

Ex[f(Bτ0)],

where τ0 := inf{t ≥ 0 : Zt = 0} is fixed in the expression on the right-hand side.

Also note that Lemma 1.1.3 implies that, for the solution to the constrained optimal stopping
problem (1.0.1), we have Ex[τ ] = K. Defining τ as above in the control problem (1.1.1), we
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see that the condition Ex[τ ] = K is satisfied, by adapting the proof of Lemma 1.1.1. With this
definition of τ , taking limits in equation (1.1.2) gives

Ex[τ ] = Z0 − Ex[Zτ ] = Z0 = K, (1.1.3)

since Zτ = 0 almost surely.

The stochastic optimal control problem which we wish to solve for convex f is now as follows.
Define the set of admissible controls

U := {(αt)t≥0 : α adapted to F} ,

and define Xt = (Bt, Zt), so that

dXt =

&
1
αt

'
dBt +

&
0
−1

'
dt. (1.1.4)

Also define the stopping time
τ := inf{t ≥ 0 : Zt = 0}. (1.1.5)

We seek the value function v : R× R+ → R defined as

v(x, z) := sup
α∈U

Ex,z[f(Bτ )]. (1.1.6)

Notation. The notation Ex,z stands for the expectation under the joint law of B started from
x ∈ R and Z started from z ∈ R.

In the remainder of this chapter, we will look at examples where we can explicitly write
down the value function, in order to illustrate techniques which we will use in more general cases
in future. We will also refer to these examples later to suggest connections to other classes of
problems.

1.2 A One-Point Reward Function

We start by taking the reward function f to be a very simple convex function. Let M ∈ R and
define

f(x) = (x−M)+ ∀x ∈ R; (1.2.1)

i.e.

f(x) =

(
x−M, for x ≥ M,

0, for x < M.

With the stopping time τ defined in (1.1.5), we have Zτ = 0 almost surely. We conjecture that
the optimal strategy will be for the process to run to one of two points, which are spaced equally
either side of the midpoint (M, 0) on the z-axis. We expect that, given X0 = (x0, z0), there
exist real numbers l, r such that Xτ ∈ {(l, 0), (r, 0)}. Moreover, we should have l < M < r, with
M − l = r −M , so that l and r are related by

l = 2M − r, r = 2M − l,

as shown in Figure 1.1.
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The value function will then be the expected reward under this optimal strategy. We now
deduce the value function which satisfies this requirement.

We see that
f(l) = 0, f(r) = r −M,

since l < M < r.

Bt

Zt

l

r

M
(x, z)

Figure 1.1: The paths that the process would follow under the conjectured optimal strategy for
the stochastic optimal control problem (1.1.6) with reward function (1.2.1). We show an example
of an initial point (x, z), with its possible terminal points (l, 0), (r, 0).

Let us define the probability p := Px,z(Bτ = r) and observe that Px,z(Bτ = l) = 1−p. Therefore

Ex,z[Bτ ] = pr + (1− p)l = pr + (1− p)(2M − r).

Since Bt is a martingale and B0 = x, we can, by introducing a bounded stopping time as in
the proof of Lemma 1.1.1, use the optional stopping theorem and a limiting argument to get the
condition

pr + (1− p)(2M − r) = x. (1.2.2)

We also note that, since Ex[τ ] < ∞, Wald’s lemma (see e.g. Theorem 2.48 of [22]) implies that
Ex,z[B2

τ ] = Ex,z[τ ]+x2. As noted in (1.1.3) in the previous section, we also have Ex,z[τ ] = Z0 = z.
Combining these identities with the formula for Ex,z[B2

τ ], we get a second condition:

pr2 + (1− p)(2M − r)2 = z + x2. (1.2.3)
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From equation (1.2.2), we can write

p =
x+ r − 2M

2(r −M)
,

and substituting this into equation (1.2.3), we get

x+ r − 2M

2(r −M)
r2 +

r − x

2(r −M)
(2M − r)2 = z + x2.

Rearranging this, we see that

(r −M)2 = (x−M)2 + z = (l −M)2,

where the final equality is due to the fact that r − M = M − l. Then, using the condition
l < M < r, we can conclude that we must have

r = M +
)
z + (x−M)2

l = M −
)
z + (x−M)2.

We can substitute the above into our expression for p to get

p =
x−M +

)
z + (x−M)2

2
)
z + (x−M)2

.

Given an initial point (x, z), the point l, and therefore r, is fixed. The curves shown in Figure
1.1 are the level curves of l as a function of (x, z).

Under our conjectured optimal strategy, we have

Ex,z[f(Bτ )] = p(r −M)+ + (1− p)(l −M)+

= p(r −M), since l < M < r.

Substituting in our expressions for r and p, we get

Ex,z[f(Bτ )] =
x−M +

)
z + (x−M)2

2
)
z + (x−M)2

)
z + (x−M)2

=
1

2

*
x−M +

)
z + (x−M)2

+
.

We therefore conjecture the following value function:

v(x, z) =
1

2

*
x−M +

)
z + (x−M)2

+
. (1.2.4)

In the following section, we aim to prove that v is indeed the value function, using the dynamic
programming principle.

1.3 The Dynamic Programming Principle

The dynamic programming principle is a method for deriving a PDE which must be solved
in some sense by the value function of a stochastic optimal control problem, as described, for
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example, in Section 2.2 of [33]. The basic idea is as follows. Suppose that we start at a certain
point and, from some intermediate point onwards, we act optimally. Then choosing an optimal
strategy is equivalent to finding the optimal strategy up to the intermediate point. We write this
down as

v(x, z) ≥ Ex,z[v(Bτ , Zτ )], (1.3.1)

for the value function v and any stopping time τ , with equality for the optimal strategy.

A PDE arises from the above principle by considering the generator of the process. Let us
introduce the notation Xα for the process X, defined in (1.1.4), with control α ∈ U , and let Lα

denote the generator of Xα. Recall that the generator is defined by

Lαv(x, z) := lim
h↓0

Ex,z[v(Bh, Z
α
h )]− v(x, z)

h
,

for all functions v such that the limit exists, and for all x, z ∈ R, as in Section 7.3 of [24].

We therefore see the following approximate relation:

Ex,z[v(Bε, Z
α
ε )] = v(x, z) + Lαv(x, z)ε+ o(ε),

for any ε > 0. Hence, in order to obey the inequality (1.3.1), we require that Lαv ≤ 0, with
equality for the optimal α. Since the infinitesimal generator is a partial differential operator, we
arrive at a PDE which the value function must solve.

In our case, we can use the standard formula for the generator, given in Theorem 7.3.3 of [24],
to calculate that

Lα =
∂

∂x2
+

1

2

,

i,j

-&
1
αt

'&
1
αt

'⊤
.

∂2

∂xi∂xj
.

Evaluating &
1
αt

'&
1
αt

'⊤
=

&
1 αt

αt α2
t

'
,

we arrive at

Lα = − ∂

∂z
+

1

2

∂2

∂x2
+ αt

∂2

∂x∂z
+

1

2
α2
t

∂2

∂z2
. (1.3.2)

We now aim to show that our conjectured value function v, defined in (1.2.4), solves a PDE,
and to prove formally that any solution to this PDE must solve the stochastic optimal control
problem (1.1.6) with reward function (1.2.1).

A connection between the stochastic optimal control problem studied here and the following
Monge-Ampère type equation is made in [21]:

1

2
det(D2u)− ∂u

∂z

∂2u

∂z2
= 0.

We therefore check that our conjectured value function solves this equation with appropriate
conditions. The domain we consider is Ω := R× (0,∞) with boundary ∂Ω := {(x, z) ∈ R2 : z =
0}.

Notation. Throughout, we denote the Hessian of a twice differentiable function u by D2u.
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Remark 1.3.1. The determinant of the Hessian is given by

det(D2u) =
∂2u

∂x2

∂2u

∂z2
−
&

∂2u

∂x∂z

'2

.

Lemma 1.3.1. The function v, defined in (1.2.4), is a C2(Ω) ∩ C(Ω) solution to the following
PDE problem: /

01

02

1
2 det(D

2u)− ∂u
∂z

∂2u
∂z2 = 0 on Ω

∂2v
∂z2 ≤ 0 on Ω

u = f on ∂Ω,

(1.3.3)

where f : R → R is defined by f(x) = (x−M)+, for all x ∈ R.

Proof. We verify our claim by computing the relevant derivatives:

∂v

∂x
=

1

2

*
1 + (x−M)(z + (x−M)2)−

1
2

+
,

∂2v

∂x2
=

1

2
(z + (x−M)2)−

1
2 − 1

2
(x−M)2(z + (x−M)2)−

3
2 ,

∂v

∂z
=

1

4
(z + (x−M)2)−

1
2 ,

∂2v

∂z2
= −1

8
(z + (z −M)2)−

3
2 .

We see immediately that v satisfies the condition ∂2v
∂z2 ≤ 0 on Ω.

Computing the cross derivatives, we see that

∂2v

∂x∂z
= −1

4
(x−M)(z + (x−M)2)−

3
2

⇒
&

∂2v

∂x∂z

'2

=
1

16
(x−M)2(z + (x−M)2)−3.

Therefore we can calculate the determinant of the Hessian as

det(D2u)

=
∂2u

∂x2

∂2u

∂z2
−
&

∂2u

∂x∂z

'2

= − 1

16
(z + (x−M)2)−2 +

1

16
(x−M)2(z + (x−M)2)−3 − 1

16
(x−M)2(z + (x−M)2)−3

= − 1

16
(z + (x−M)2)−2

= 2
∂v

∂z

∂2v

∂z2
.

Hence v satisfies the PDE.
Finally, we check the boundary condition. When z = 0, we have

v(x, 0) =
1

2

*
x−M +

)
(x−M)2

+

=

(
1
2 (x−M + (x−M)) = x−M for x ≥ M
1
2 (x−M − (x−M)) = 0 for x < M.

= (x−M)+ = f(x),

as required.
Therefore v solves (1.3.3).

12
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We now make rigorous the dynamic programming principle discussed earlier, by showing that
the PDE (1.3.3) is the dynamic programming equation, also called the Hamilton-Jacobi-Bellman
equation, for the stochastic optimal control problem (1.1.6) with reward function (1.2.1). Our
proof of the below theorem follows the arguments in Section 11.2 of [24].

Theorem 1.3.1. Let v ∈ C2(Ω) ∩ C(Ω) be a solution to the PDE problem (1.3.3):
/
01

02

1
2 det(D

2u)− ∂u
∂z

∂2u
∂z2 = 0 on Ω

∂2v
∂z2 ≤ 0 on Ω

u = f on ∂Ω,

where f : R → R is defined by f(x) = (x−M)+, for all x ∈ R.

Then v is the value function of the stochastic optimal control problem (1.1.1); that is

v(x, z) = sup
α∈U

Ex,z[f(Bτ )].

Proof. Let α ∈ U be any admissible control process. In the discussion above, we calculated the
generator to be (1.3.2):

Lα = − ∂

∂z
+

1

2

∂2

∂x2
+ αt

∂2

∂x∂z
+

1

2
α2
t

∂2

∂z2
.

Multiplying through by 2∂2v
∂z2 , we get

2
∂2v

∂z2
Lαv = −2

∂v

∂z

∂2v

∂z2
+

∂2v

∂x2

∂2v

∂z2
+ 2αt

∂2v

∂x∂z

∂2v

∂z2
+ α2

t

&
∂2v

∂z2

'2

. (1.3.4)

Now let v ∈ C2(Ω) ∩ C(Ω) solve (1.3.3). We then see that, in Ω,

−2
∂v

∂z

∂2v

∂z2
+

∂2v

∂x2

∂2v

∂z2
= − det(D2v) +

∂2v

∂x2

∂2v

∂z2
, since v solves the PDE,

= −
-
∂2v

∂x2

∂2v

∂z2
−
&

∂2v

∂x∂z

'2
.
+

∂2v

∂x2

∂2v

∂z2
, by Remark 1.3.1,

=

&
∂2v

∂x∂z

'2

.

Substituting this back into (1.3.4), we now have

2
∂2v

∂z2
Lαv =

&
∂2v

∂x∂z

'2

+ 2αt
∂2v

∂x∂z

∂2v

∂z2
+ α2

t

&
∂2v

∂z2

'2

=

&
∂2v

∂x∂z
+ αt

∂2v

∂z2

'2

≥ 0.

Since ∂2v
∂z2 ≤ 0, we have that Lαv ≤ 0 in Ω.

Moreover, suppose that ∂2v
∂z2 ∕= 0 and set

α∗ ≡ − ∂2v

∂x∂z

3
∂2v

∂z2
.

13
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Then Lα∗
v = 0 in Ω.

An application of Dynkin’s formula (see e.g. Theorem 7.4.1 of [24]) and a limiting argument
will now give us that α∗ is the optimal control and v is the value function.

Let τ := inf{t ≥ 0 : Xt ∈ ∂Ω} = inf{t ≥ 0 : Zt = 0}. By Lemma 1.1.1 and the discussion
following Lemma 1.1.3, we have that Ex,z[τ ] < ∞. However, since v is not compactly supported
and Ω is not a compact set, we cannot apply Dynkin’s formula directly for the stopping time τ .
Therefore, we apply Dynkin to τ ∧ TR, where TR := inf{t ≥ 0 : |Xt∧τ | ≥ R} ∧R, as in the proof
of Lemma 1.1.1, and use a limiting argument.

We have that Ex,z[τ ∧ TR] ≤ Ex,z[τ ] < ∞ and τ ∧ TR ≤ TR, with TR the exit time of a
compact domain. Since we also have v ∈ C2(Ω), the conditions to apply Dynkin’s formula are
satisfied (as set out in Section 7.4 of [24]), and we get

Ex,z [v(Bτ∧TR
, Zτ∧TR

)] = v(x, z) + Ex,z

-" τ∧TR

0

Lαv(Br, Zr) dr

.

≤ v(x, z),

(1.3.5)

since Lαv ≤ 0 in Ω, for all α ∈ U .

We see that τ ∧ TR → τ almost surely, as R → ∞, since Ex,z[τ ] < ∞ implies that τ < ∞
almost surely

By continuity of the value function v, we have v(Bτ∧TR
, Zτ∧TR

) → v(Bτ , Zτ ) almost surely,
as R → ∞.

Next we wish to apply dominated convergence. We claim that

v(x, z) ≤ C(x2 + z + 1), (1.3.6)

for some generic constant C > 0.

We use the standard inequality
√
a+ b ≥

√
a+

√
b, for all a, b ∈ R+,

to see that )
z + (x−M)2 ≤

√
z + (x−M).

Then

v(x, z) =
1

2

*
x−M +

)
z + (x−M)2

+

≤ C(x−M +
√
z) ≤ C(x+

√
z + 1)

≤ C([x2 + 1] + [z + 1] + 1), using the inequality a ≤ a2 + 1, for any a ∈ R, twice,
≤ C(x2 + z + 1), where C is a generic constant throughout.

Now, by the optional stopping theorem for bounded stopping times,

E[B2
τ∧TR

] = E[τ ∧ TR] < ∞
and E[Zτ∧TR

] ≤ E[Z0] < ∞.

14
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Combining this with the estimate (1.3.6), we get

Ex,z [v(Bτ∧TR
, Zτ∧TR

)] ≤ CEx,z
4
B2

τ∧TR
+ Zτ∧TR

+ 1
5
< ∞.

The dominated convergence theorem now gives us that, as R → ∞,

Ex,z [v(Bτ∧TR
, Zτ∧TR

)] → Ex,z[v(Bτ , Zτ )] = Ex,z[f(Bτ )].

Now, taking limits as R → ∞ in the inequality (1.3.5), we get

v(x, z) ≥ Ex,z[f(Bτ )].

Finally, if we take α = α∗, we have Lα∗
= 0 in Ω, and so (1.3.5) becomes

Ex,z [v(Bτ∧TR
, Zτ∧TR

)] = v(x, z).

Taking limits, as above, we find that

v(x, z) = Ex,z[f(Bτ )].

We have now shown that
v(x, z) ≥ Ex,z[f(Bτ )],

for any control α ∈ U , with equality for α = α∗. Hence v is the value function and α∗ is the
optimal strategy.

Combining this theorem and the preceding lemma, we have proved that the function v con-
jectured in (1.2.4) is indeed the value function for the stochastic optimal control problem (1.1.6)
with reward function (1.2.1).

1.4 A Two-Point Reward Function

We now consider a slightly more complicated reward function f , which is the sum of two of the
functions of the form we considered in the previous section:

f(x) = (x−M1)+ + (x−M2)+, M1 < M2, for all x ∈ R. (1.4.1)

Already, we will see that the problem quickly becomes technically more difficult. We use the
solution to our first example to conjecture a value function, before introducing the machinery of
viscosity solutions in the next section, which will be required to tackle this and more complicated
problems.

We make the simplifying assumption that M1 = −1 and M2 = 1 and note that it will be
straightforward to generalise this to any M1,M2.

We conjecture that the value function will satisfy the PDE problem (1.3.3), as in the previ-
ous example, on each of the four regions labelled A,B,C,D in Figure 1.2, but with the boundary
condition at z = 0 given by f in (1.4.1).

In Lemma 1.3.1 in the previous section, we saw that, for any M ∈ R, v(x, z) = 1
2 (x − M +)

z + (x−M)2) solves the PDE in (1.3.3). We note that, for any α,β, γ,M ∈ R,

v(x, z) =
α2

2

*
x−M +

)
z + (x−M)2

+
+ βx+ γ

15
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z + (x+ 1)2 = 1

z + (x− 1)2 = 1 z + x2 = 4A

B

C

D

Bt

Zt

1

2

−1

−2

Figure 1.2: The four regions on which the conjectured solution to the optimal stopping problem
is defined, with the boundaries between the regions labeled. In regions A,B,C, we expect the
optimal trajectories to be of the form shape as those shown in Figure 1.1, while particles started
in region D should jump to the nearest boundary between regions, which are themselves optimal
trajectories.

is also a solution to this PDE, which maintains the concavity condition ∂2v
∂z2 ≤ 0, since α2 ≥ 0.

In region A, we take M = 1. In this region, x ≥ 0, so the boundary condition is f(x) =
(x− 1)+ + x+ 1, and we must have α2 = β = γ = 1.

In region B, we take M = −1. Here, x ≤ 0, so the boundary condition is f(x) = (x + 1)+,
implying that α2 = 1 and β = γ = 0.

In region C, we take M = 0. When z = 0, we either have x ≤ −2 or x ≥ 2, and f(x) = 2x+, in
both cases. Therefore α2 = 2 and β = γ = 0.

The solution in region D is not of the same form. Here we seek a function which solves the
PDE in such a way that the solution is continuous on the whole domain. We search for a
function of the form v(x, z) = w1(x, z) + w2(x, z), where w1, w2 are linear in z and satisfy

w1(x, z) =

(
0, on z + (x− 1)2 = 1,

x+ 2, on z + x2 = 4,

w2(x, z) =

(
3
2x+ 1, on z + (x− 1)2 = 1,

0, on z + x2 = 4.

16
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We see that w1, w2 satisfy these conditions if we define them by

w1(x, z) =
z + (x− 1)2 − 1

4− x2 + (x− 1)2 − 1
(x+ 2),

w2(x, z) =
z + x2 − 4

1− (x− 1)2 + x2 − 4

&
3

2
x+ 1

'
.

Summing these two functions results, after some cancellation, in

v(x, z) =
1

4

4
z + (x+ 2)2

5
.

This also satisfies v(x, z) = 1
2x+ 1 on z + (x+ 1)2 = 1. Therefore v is continuous on the bound-

aries between D and the regions A,B,C and satisfies the boundary condition at z = x = 0.

It is straightforward to check that v satisfies the PDE in D. We can easily calculate the relevant
derivatives, as follows:

∂v

∂x
=

1

2
(x+ 2),

∂2v

∂x2
=

1

2
,

∂v

∂z
=

1

4
,

∂2v

∂z2
=

∂2v

∂x∂z
= 0.

Therefore
1

2
det(D2v)− ∂v

∂z

∂2v

∂x2
=

1

2

&
1

2
· 0− 0

'
− 1

4
· 0 = 0,

and so the PDE is solved.

Putting all of this together, we conjecture the following value function:

v(x, z) =

/
00000001

00000002

1
2

6
x− 1 +

)
z + (x− 1)2

7
+ x+ 1, z ∈ (0, 1− (x− 1)2), x ∈ (0, 2)

1
2

6
x+ 1 +

)
z + (x+ 1)2

7
, z ∈ (0, 1− (x+ 1)2), x ∈ (−2, 0)

1
4

4
z + (x+ 2)2

5
, z ∈ (max{1− (x− 1)2, 1− (x+ 1)2}, 4− x2),

x ∈ (−2, 2)
1
2

4
x+

√
z + x2

5
, z > max 0, 4− x2, x ∈ R.

(1.4.2)
In the interior of the four regions on which the function is defined, v solves the PDE problem
(1.3.3) with boundary function f given by (1.4.1) and so, by a similar argument as in Theorem
1.3.1, v must coincide with the value function for the stochastic optimal control problem.

On some of the boundaries between the regions, however, we can check that v is not contin-
uously differentiable. We calculate, for example, that in region B,

∂v

∂x
=

1

2

6
1 + (z + (x+ 1)2)−

1
2 (x+ 1)

7
→ x

2
+ 2,

where the limit is taken approaching the boundary between regions B and D, on which z+(x+
1)2 = 1. However, in region D, ∂v

∂x = x
2 , so v is not C1 on this boundary. Similar calculations

can be made for the boundary between regions C and D. Interestingly, v is C1 on the boundary
between regions A and D, but still is not C2.
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Therefore, v cannot be a classical solution to the second order PDE on Ω, and we will have
to work harder to show that v is the value function.

In the next section, we introduce a notion of a weak solution known as a viscosity solution.
We conjecture that viscosity solutions are the right notion of solution to consider here and that
the value function will be the unique viscosity solution to the PDE.

1.5 Viscosity Solutions

Viscosity solutions were introduced by Ishii and Lions in [17] in order to have a good notion of
solution for first order Hamilton-Jabobi equations arising in deterministic optimal control prob-
lems, as noted in [15]. In [14], Crandall, Ishii and Lions give an overview of viscosity solutions
for second order PDEs, such as the Hamilton-Jacobi-Bellman equations which arise in stochastic
optimal control problems. In this section, we define viscosity solutions for the type of PDEs in
which we are interested, and indicate how these can be applied to the stochastic optimal control
problem (1.1.6).

Let F : Ω × Rd × Rd×d × R → R be a differential operator on some domain Ω ⊂ Rd. We
are interested in the PDE

F (x,Du(x), D2u(x), u(x)) = 0. (1.5.1)

As observed in Section II.4 of [15], we require the operator F to be elliptic; i.e.

F (x, s, A, V ) ≤ F (x, s,B, V ), for A−B non-negative definite.

We introduce the following shorthand notation for positive-definiteness, which we use from now
on.

Notation. Let A and B be matrices of the same dimension. We use the notation A ≤ B to
denote that A − B is a non-positive definite matrix. Similarly, A < B denotes that A − B is
negative definite.

We motivate the definition of viscosity solutions as in [14].

Suppose that there exists a classical solution, v, to the PDE and that φ is a smooth func-
tion which touches the solution from above; i.e. φ ≥ v and φ(x̄) = v(x̄) for some x̄. Then
v − φ has a local maximum at x̄, which implies that Dv(x̄) = Dφ(x̄) and D2v(x̄) ≤ D2φ(x̄). By
ellipticity of F , we have

F (x̄, Dφ(x̄), D2φ(x̄), v(x̄)) ≤ F (x̄, Dv(x̄), D2v(x̄), v(x̄)) = 0.

Similarly, for a smooth ψ touching v from below, we get F (x̃, Dψ(x̃), D2ψ(x̃), v(x̃)) ≥ 0, at the
local minimum x̃ of v − ψ.

A viscosity solution is a function v which must satisfy the above inequalities for smooth functions
touching from above and below, without the requirement that v itself is C2. This is, therefore, a
generalisation of a classical solution for PDEs which are sufficiently well-behaved. We take our
definition of a viscosity solution from [15].
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Definition 1.5.1 (Viscosity solution). We say that a continuous function v : Ω → R is a viscosity
subsolution of (1.5.1) if, for every smooth w ∈ C∞(Ω),

F (x̄, Dw(x̄), D2w(x̄), v(x̄)) ≤ 0,

at every point x̄ ∈ Ω which is a local maximum of v − w.

Similarly, a continuous function v : Ω → R is a viscosity supersolution of (1.5.1) if, for every
smooth w ∈ C∞(Ω),

F (x̄, Dw(x̄), D2w(x̄), v(x̄)) ≥ 0,

at every point x̄ ∈ Ω which is a local minimum of v − w.

A function v which is both a viscosity subsolution and a viscosity supersolution of (1.5.1) is
a viscosity solution.

We conjecture that the function v defined in (1.1.6) is the unique viscosity solution to the
PDE problem (1.3.3), with boundary condition f given in (1.4.1), and we intend to verify this
claim.

Using the same method as in the previous example, we can show that v is the value function of
the stochastic optimal control problem (1.1.6) with reward function (1.4.1) on the interior of each
of the regions A,B,C,D. Using the theory of viscosity solutions described above, we claim that
it will be possible to prove that v is the value function on the whole domain. In the following
section, we present an alternative approach.

1.6 The Itô-Tanaka Formula

We wish to show that, on each boundary, the expected reward remains the same when following
the path of the boundary, but that crossing the boundary will decrease the expected reward.
This would complete the proof that v is the desired value function on the domain Ω.

First, we wish to show that v(Bt, Zt) is a martingale, when (Bt, Zt) is restricted to lie on one
of the boundaries. In order to do this, we will be able to use the one-dimensional form of Itô’s
formula, since we are looking at a one-dimensional domain and the function v is smooth in this
direction. We recall that Itô’s formula in one dimension (see e.g. Section 4.1 of [24]) is:

dv(Xt) =
∂v

∂t
(Xt) dt+

∂v

∂x
(Xt) dXt +

1

2

∂2v

∂x2
(Xt)σ

2
t dt,

for dXt = µt dt+ σt dBt.

Applying this formula, we expect to be able to show that the expected reward remains con-
stant on each boundary curve.

Next, we wish to show that v(Bt, Zt) is a supermartingale when moving in any direction which
crosses a boundary between two regions. Again, we would like to use Itô’s formula to show this,
but we have the problem that v is not C2 at the boundaries. We therefore use the Itô-Tanaka
formula (see Chapter VI, §1 of [27]), which allows for functions which are not twice continuously
differentiable, by introducing a quantity known as local time into the formula. As stated in [27],
local time can be thought of as the occupation time of a certain level by a one-dimensional
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stochastic process.

The Itô-Tanaka formula extends Itô’s formula to convex functions and to any function which
is the difference of two convex functions. We intend to apply this formula to the example from
Section 1.4, and may also make us of this in further examples with different reward functions f .
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Chapter 2

Monge-Ampère Equations

Monge-Ampère equations come up in several areas of mathematics, including the theory of
optimal transport (see e.g. [10, 34]). A Monge-Ampère equation is defined to be a non-linear
second order PDE of the form

det(D2u) = f(Du, u, x), (2.0.1)

as noted in Section 4.1.1 of [34].

Some derivations of stochastic representation results for Monge-Ampère type equations exist
in the literature. For example, [32] shows that the solution to a stochastic optimal control prob-
lem solves a parabolic Monge-Ampère type equation. We note that the stochastic optimal control
problem considered there is similar to the one which we have considered so far in this report,
but with additional time-dependence. Similar results have been achieved by Karatzas in [18].
We are not aware, however, of any papers in the literature which give a stochastic representation
result for (2.0.1) using the theory of viscosity solutions.

In this chapter we show how stochastic optimal control relates to Monge-Ampère equations
and describe how we expect to derive the viscosity solutions to these equations from stochastic
optimal control problems. In Section 2.2.1, we provide a preliminary result in this direction.

2.1 A Hamilton-Jacobi-Bellman Equation

The PDE arising in the previous section from the dynamic programming principle is known as
a Hamilton-Jacobi-Bellman (HJB) equation (see e.g. Section 11.2 of [24]):

1

2
det(D2u)− ∂u

∂z

∂2u

∂z2
= 0.

The results of the previous section give us a stochastic representation result for this equation.

It is noted in [21] that this equation is a Monge-Ampère type equation, although it is not
quite of the form (2.0.1). Motivated by this observation, we have begun to explore altering our
stochastic optimal control problem with the aim of deriving stochastic representation results for
Monge-Ampère equations. In the following section, we present one preliminary result which we
plan to extend.
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2.2 A Stochastic Representation Result

We consider the simplest form of the Monge-Ampère equation in this section:

det(D2u) = 0.

Recall that, so far, we have been considering the stochastic process with generator

Lα = − ∂

∂z
+

1

2

∂2

∂x2
+ αt

∂2

∂x∂z
+

1

2
α2
t

∂2

∂z2
.

We conjecture that, if we alter this process to remove the ∂
∂z term from the generator, we will

recover the desired form of the Monge-Ampère equation.

Therefore, let us consider the process Xα = (B,Z) defined by

dXα
t =

&
1
αt

'
dBt.

The generator of this process is

Lα =
1

2

∂2

∂x2
+ αt

∂2

∂x∂z
+

1

2
α2
t

∂2

∂z2
.

Returning to the dynamic programming principle described in Section 1.3, we should have Lα ≤ 0
for all α ∈ U , with equality for the optimal control.

We see that the generator is maximised for

α = α∗ = − ∂2u

∂x∂z

3
∂2u

∂z2
,

∂2u

∂z2
< 0.

Therefore, we expect the value function to satisfy the following PDE:

0 =
∂2u

∂z2
Lα∗

=
1

2

∂2u

∂x2

∂2u

∂z2
−
&

∂2u

∂x∂z

'2

+
1

2

&
∂2u

∂x∂z

'2

=
1

2

∂2u

∂x2

∂2u

∂z2
− 1

2

&
∂2u

∂x∂z

'2

=
1

2
det(D2u).

We note that the process here has a symmetry in the B and Z directions, since Z is now a
martingale. Therefore, we suggest that we should reparametrise the process so that we have a
symmetric parametrisation, as follows:

dXθ
t =

&
dX1,θ

t

dX2,θ
t

'
=

&
cos θt
sin θt

'
dBt,

for
θ ∈ U := {(θt)t≥0 : θt ∈ [−π,π), ∀t ≥ 0, θ F− adapted} .

In this symmetric problem, we would expect that the condition that the solution is concave in the
z direction should be replaced with the symmetric concavity condition that the Hessian matrix
D2v is required to be non-positive definite, which we write D2v ≤ 0.
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2.2.1 Monge-Ampère on a Compact Domain

We now present an initial stochastic representation result for the Monge-Ampère equation on
a compact domain, which we aim to generalise in future work. The method of proof of this
theorem is similar to that of Theorem 1.3.1, but is made more straightforward by working on a
compact domain.

Theorem 2.2.1. Let Ω ⊂ R2 be a compact domain. Suppose that there exists a function v ∈
C2(Ω) ∩ C(Ω) which solves the following Monge-Ampère problem:

/
01

02

det(D2v) = 0 on Ω

D2v ≤ 0 on Ω

v = f on ∂Ω,

(2.2.1)

where f : R2 → R is continuous.

Then v is the value function of the following stochastic optimal control problem:

v(x) = sup
θ∈U

Ex
4
f(Xθ

τ∂Ω
)
5
, x ∈ R2, (2.2.2)

where

dXθ
t =

&
cos θt
sin θt

'
dBt,

and
τ∂Ω := inf{t ≥ 0 : Xθ

t ∈ ∂Ω}.

Proof. We begin by computing the generator of Xθ. Since

&
cos θt
sin θt

'&
cos θt
sin θt

'⊤
=

&
cos2 θt cos θt sin θt
cos θt sin2 θt

'
,

the generator is

Lθ =
1

2
cos2 θt

∂2

∂x2
1

+ cos θt sin θt
∂2

∂x1∂x2
+

1

2
sin2 θt

∂2

∂x2
2

.

Let v solve the Monge-Ampère problem with the smoothness conditions in the statement of the
theorem. Note that the condition that the Hessian is non-positive definite implies in particular
that

∂2v

∂x2
1

+
∂2v

∂x2
2

=

&
1
−1

'⊤
D2v

&
1
−1

'
≤ 0.

We will make use of this fact, by multiplying the generator by this quantity.

We also use the fact that, since v solves the PDE,

θt
∂2v

∂x2
1

∂2v

∂x2
2

= det(D2v) +

&
∂2v

∂z2

'2

=

&
∂2v

∂z2

'2

.
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We now calculate that, for any θ ∈ U ,

2
∂2v

∂x2
1

Lθv = cos2 θt
∂2v

∂x2
1

∂2v

∂x2
2

+ 2 cos θt sin θt
∂2v

∂x1∂x2

∂2v

∂x2
2

+ sin2t

&
∂2v

∂x2
2

'2

= cos2 θt

&
∂2v

∂z2

'2

+ 2 cos θt sin θt
∂2v

∂x1∂x2

∂2v

∂x2
2

+ sin2t

&
∂2v

∂x2
2

'2

=

&
cos θt

∂2v

∂x1∂x2
+ sin θt

∂2v

∂x2
2

'2

.

Similarly, we can calculate that

2
∂2v

∂x2
2

Lθv =

&
sin θt

∂2v

∂x1∂x2
+ cos θt

∂2v

∂x2
1

'2

.

Both expressions are clearly non-negative. The first expression is equal to zero, and is therefore
minimised, when

tan θ = − ∂2v

∂x1∂x2

3
∂2v

∂x2
2

.

Setting the second expression to zero, we find that

tan θ = −∂2v

∂x2
1

3
∂2v

∂x1∂x2
.

Since det(D2v) = 0, the above two conditions for θ are, in fact, the same:

−∂2v

∂x2
1

3
∂2v

∂x1∂x2
= −∂2v

∂x2
1

∂2v

∂x2
2

3
∂2v

∂x1∂x2

∂2v

∂x2
2

= −
&

∂2v

∂x1∂x2

'2 3
∂2v

∂x1∂x2

∂2v

∂x2
2

, since
∂2v

∂x2
1

∂2v

∂x2
2

=

&
∂2v

∂x1∂x2

'2

= − ∂2v

∂x1∂x2

3
∂2v

∂x2
2

.

Therefore, we have that

2

&
∂2v

∂x2
1

+
∂2v

∂x2
2

'
Lθ =

&
cos θt

∂2v

∂x1∂x2
+ sin θt

∂2v

∂x2
2

'2

+

&
sin θt

∂2v

∂x1∂x2
+ cos θt

∂2v

∂x2
1

'2

≥ 0,

for all θ ∈ U , with equality when

θ ≡ θ∗ ≡ arctan

&
− ∂2v

∂x1∂x2

3
∂2v

∂x2
2

'
∈ [−π,π).

Since ∂2v
∂x2

1
+ ∂2v

∂x2
2
≤ 0, we conclude that

Lθv ≤ 0

for all θ, with equality when θ ≡ θ∗. Now we apply Dynkin’s formula, which tells us that

Ex
4
v(Xθ

τ∂Ω
)
5
= v(x) + Ex

!" τ∂Ω

0

Lθv(Xθ
t ) dt

#

≤ v(x),

(2.2.3)
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since Lθv(x) ≤ 0 for all θ ∈ U and all x ∈ R2.

Applying the boundary condition gives us that v(Xθ
τ∂Ω

) = f(Xθ
τ∂Ω

) almost surely, by continuity
of f , so we have

v(x) ≥ Ex
4
f(Xθ

τ∂Ω
)
5
, for all θ ∈ U, x ∈ R2.

Moreover, for θ ≡ θ∗, we have equality in the expression (2.2.3), so

v(x) = Ex
6
f(Xθ∗

τ∂Ω
)
7
.

Hence v is the value function for the stochastic control problem (2.2.2), with optimal control
θ∗.

Recalling the example in Section 1.4, we expect that, for most choices of f , the value func-
tion (2.2.2) will not be C2 and therefore cannot solve the Monge-Ampère problem (2.2.1) in the
classical sense.

We now verify that viscosity solutions, as defined in Definition 1.5.1, will be the right notion of
solution to consider in this case.

Remark 2.2.1. Suppose that there exists a classical solution v ∈ C2(Ω)∩C(∂Ω) to the Monge-
Ampère problem (2.2.1) in the above theorem. Then v is also a viscosity solution to the PDE.

We will appeal to the following lemma to prove this.

Lemma 2.2.1. Let A be a 2× 2 matrix which is either positive semi-definite or negative semi-
definite. Then detA ≥ 0.

Proof. First suppose that A ≥ 0 and let v be an eigenvector of A with corresponding eigenvalue
λ. Then

0 ≤ v⊤Av = v⊤λv = λ ‖v‖2 .

So λ ≥ 0. Since A has two eigenvalues, λ1,λ2, which are both non-negative, we have

detA = λ1λ2 ≥ 0.

Now suppose A ≤ 0. Similarly to above,

0 ≥ λ ‖v‖2 ,

for any eigenpair (λ, v). So λ1,λ2 ≤ 0, and hence

detA = λ1λ2 ≥ 0.

Proof of remark. Let v ∈ C2(Ω) ∩ C(∂Ω) be a classical solution to (2.2.1). First, we show that
v is a viscosity subsolution. Let w ∈ C∞(Ω) and x ∈ argmax(v − w). We need to show that
det(D2w)(x) ≤ 0.

Since x is a local maximum of v−w, D2(v−w)(x) ≤ 0. Therefore, by Lemma 2.2.1, detD2(v−
w)(x) ≥ 0. Since v is a classical solution to the PDE,

det(D2w)(x) ≤ det(D2v)(x) = 0.
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Hence v is a viscosity subsolution of the PDE. To show that v is also a supersolution, now let
y ∈ argmin(v − w). We now need to show that det(D2w)(y) ≥ 0.

Since y is a local minimum of v − w, D2(v − w)(y) ≥ 0. Also, by our assumptions on v,
we know that D2v ≤ 0. Therefore,

(D2w)(y) ≤ (D2v)(y) ≤ 0.

Applying Lemma 2.2.1 again, we have det(D2w)(y) ≥ 0, as required. Hence we have shown that
v is a viscosity solution.

We will aim to prove that, in general, the value function of the stochastic optimal control
problem (2.2.2) is a viscosity solution to the Monge-Ampère problem. We also expect that we will
be able to prove uniqueness of this viscosity solution using a comparison principle, as explained
in [15] and proved for the problem (1.3.3) by Miller in [21].

Conjecture 2.2.1. Let Ω ⊂ R2 be a compact domain and let v be the value function of the
following stochastic optimal control problem:

v(x) = sup
θ∈U

Ex
4
f(Xθ

τ∂Ω
)
5
, x ∈ R2,

where

dXθ
t =

&
cos θt
sin θt

'
dBt,

and
τ∂Ω := inf{t ≥ 0 : Xθ

t ∈ ∂Ω}.

Then v is the unique viscosity solution to the following Monge-Ampère problem:

/
01

02

det(D2v) = 0 on Ω

D2v ≤ 0 on Ω

v = f on ∂Ω,

where f : R2 → R is continuous.

We have made the assumption throughout this section that Ω is compact, so that Dynkin’s
formula can be applied immediately in the above proof. However, we may wish to consider
domains which are not compact. This brings us to escape problems, which we consider in the
next section.

2.2.2 Escape Problems

We may be interested to extend any stochastic representation results which we derive on compact
domains to non-compact domains, such as the half-plane (as in the example of Section 1.1) or a
strip ({x ∈ R : m1 ≤ x2 ≤ m2}). We expect that, on these domains, with boundary conditions
defined appropriately, stochastic representation results for the Monge-Ampère equation will still
hold.

We conjecture that there is a connection here to another class of problems, which we call escape
problems. This type of problem involves finding the probability that, given a stochastic process
started in a certain region of a domain, the process will leave this region before hitting the
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boundary of the domain.

For example, considering the domain in Figure 2.1, we may be interested in the probability
that a process started in region A escapes into region B before hitting the boundary of the
domain in region A.

A B

+1

+1

+10

0
0

0
0x

Figure 2.1: The domain of an escape problem, with rewards assigned to each boundary, so that
the probability of a stochastic process started from some point x escaping from the shaded region
A is equal to the value function of a stochastic optimal control problem evaluated at x.

By carefully defining the reward function, we can write such an escape problem as a stochastic
optimal control problem. In our example, we may choose to assign a reward of +1 for hitting
the boundary of the domain in region B and likewise for the process tending to ±∞, but assign
zero reward for hitting the boundary of the domain in region A, as shown in Figure 2.1. Then
we expect the value function on A to be equal to the probability of escape from region A.

Because of this relationship between escape problems and stochastic optimal control problems, we
suggest that, with appropriately defined reward functions, optimal strategies for escape problems
may give viscosity solutions to a Monge-Ampère equation.

2.3 Connections to Optimal Transport

One important application of Monge-Ampère equations is in optimal transport, as described, for
example, in [10] and in Chapter 4 of [34].

The Monge-Kantorovich problem of optimal transport is defined in [34] as follows:

Let µ, ν be probability measures on R such that
8
R x dµ < ∞,

8
R x dν < ∞, and define a

cost function c : R2 → R. Then the optimal transport problem is to find

C(µ, ν) := inf
π∈Π(µ,ν)

"

R2

c(x, y) dπ(x, y),
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where Π(µ, ν) := {π a probability measure : marginals of π are µ, ν.} is the set of all transport
plans or couplings.

Let us consider the quadratic cost function c(x, y) := |x− y|2. Then Theorem 2.12 of [34]
tells us that, provided µ and ν have finite second moments, there exists a unique optimal trans-
port plan π supported by the graph of a function u, which is the gradient of a convex function.

Moreover, suppose that each measure is absolutely continuous with respect to Lebesgue measure,
having density f and g, respectively. Then it is stated in [34] that u satisfies the following form
of the Monge-Ampère equation:

det(D2u(x)) =
f(x)

g(∇u(x))
. (2.3.1)

The interpretation of the solution as the gradient of a convex function and the connection to the
Monge-Ampère equation were first observed by Brenier in [7] (translated in [8]), and regularity
of this PDE was shown by Caffarelli in [9]. We intend to investigate stochastic representation
results, in terms of stochastic optimal control problems, for this form of the Monge-Ampère
equation.

One approach which we could try is to change the reward function so that it depends on the
whole path that the process takes, as well as its final position, as in the general statements of
stochastic optimal control problems in Section 2.1 of [33] and Chapter 11 of [24]. For example,
we could look at the problem of finding

v(x) := sup
θ∈U

Ex

!
f(Xθ

τ∂Ω
) +

" τ∂Ω

0

g(Xθ
t ) dt

#
,

or
v(x) := sup

θ∈U
Ex

6
f(Xθ

τ∂Ω
)e−

! τ∂Ω
0 h(Xθ

t ) dt
7
,

for some appropriate functions g, h : R → R.

It is unclear whether changing the reward function in such a way will yield the Monge-Ampère
equation (2.3.1), but we are nonetheless interested to find an interpretation of these value func-
tions in terms of PDEs, and we will also consider other ways of adapting the stochastic optimal
control problem to connect it to the desired form of the Monge-Ampère equation.
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Chapter 3

Martingale Optimal Transport
and Skorokhod Embeddings

Martingale optimal transport problems are characterised as classical Monge-Kantorovic prob-
lems, with an extra constraint on the admissible transport plans. In this chapter we will define
this class of problems and present some first properties. Connections have been made between
(martingale) optimal transport and Skorokhod embedding problems in [4, 5], and we also intro-
duce Skorokhod embedding in this chapter. We suggest possible links between both classes of
problems and constrained optimal stopping problems, which we propose to investigate further.

3.1 Optimal Transport

Having introduced the classical Monge-Kantorovich optimal transport problem in the previous
section, we now define martingale optimal transport and describe monotonicity principles for
both the classical and martingale problems, following Beiglböck and Juillet’s presentation in [6].
This will lead us to propose a connection to constrained optimal stopping.

Let µ, ν be probability measures on R satisfying
8
R x dµ < ∞,

8
R x dν < ∞, and let c : R2 → R be

a cost function, which we now assume satisfies the following integrability condition, as required
in [6]:

c(x, y) ≥ a(x) + b(y), for all x, y ∈ R, (3.1.1)

for some a ∈ L1(µ), b ∈ L1(ν).

The optimal transport problem is to find

C(µ, ν) := inf
π∈Π(µ,ν)

"

R2

c(x, y) dπ(x, y),

where the infimum is taken over the set of all transport plans, as defined in Section 2.3.

We next impose a further constraint to arrive at martingale optimal transport.
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3.1.1 Martingale Optimal Transport

To define a martingale optimal transport problem, we introduce the following subset of Π(µ, ν):

ΠM (µ, ν) := {π ∈ Π(µ, ν) : π = Law(X,Y ),E(Y |X) = X} ,

as in [6]. Then the martingale optimal transport problem is to find

CM (µ, ν) := inf
π∈ΠM (µ,ν)

"

R2

c(x, y) dπ(x, y). (3.1.2)

The name martingale optimal transport is used here, since the additional condition imposed is
equivalent to requiring that the two-step process (Xn)n=1,2 is a martingale, where Law(X1) = µ,
Law(X2) = ν.

Remark 3.1.1. Note that the set of transport plans, Π(µ, ν) is non-empty, since the product
measure, µ⊗ ν is always a member of this set.

However, the set of martingale transport plans, ΠM (µ, ν) may be empty. In fact, it is noted
in [6] that this set is non-empty if and only if the measures µ and ν are in convex order µ ≤ ν,
as defined below.

Definition 3.1.1 (Convex order). Let µ, ν be probability measures on R. We say that µ ≤ ν in
convex order if "

R
φ dµ ≤

"

R
φ dν,

for all convex functions φ : R → R+.

3.1.2 Monotonicity

In the classical theory of optimal transport, there is a well-known monotonicity principle. Recall
from Section 2.3 that, for the case of quadratic cost, there exists unique optimal coupling, which
is supported by the graph of the gradient of a convex function. Since the gradient of a convex
function is a monotonically increasing function, the optimal coupling is the monotone coupling,
as observed in [6]; i.e. if x1 is mapped to y1 and x2 mapped to y2, then x1 < x2 implies y1 < y2.

Theorem 1.1 of [6] states a more general monotonicity result that, for any cost function of
the form c(x, y) = h(x − y), for some strictly convex function h : R → R. Namely, any optimal
coupling is monotone, where we say that π ∈ Π(µ, ν) is monotone if there exists a set Γ ⊂ R2

with π(Γ) = 1 such that x1 < x2 implies y1 < y2 for all pairs (x1, y1), (x2, y2) ∈ Γ.

We now describe a similar monotonicity principle for martingale optimal transport, as proved
by Beiglböck and Juillet in [6].

Definition 3.1.2 (Monotonicity). We say that a measure π ∈ ΠM (µ, ν) is (left-)monotone if
there exists a Borel-measurable set, Γ ⊂ R2, with π(Γ) = 1, such that, for all pairs
(x, y−), (x, y+), (x′, y′) ∈ Γ,

x < x′ ⇒ y′ ∈ (−∞, y−] ∪ [y+,+∞).

We call Γ the monotonicity set of π.
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x

y

x

y

Figure 3.1: These diagrams, adapted from Figure 1 in [6], each show mass being transported
from two points at x to four points at y. On the left, we show a mapping which is allowed to
belong to the monotonicity set of a left-monotone coupling. On the right, we show an example
of a mapping which is forbidden.

We illustrate a mapping which satisfies this definition and one which does not in Figure 3.1.

Using the above definition of monotonicity, we have the following result from [6].

Theorem 3.1.1. Let µ, ν be probability measures on R, with µ ≤ ν in convex order, and suppose
that the cost function c satisfies the integrability condition (3.1.1). Then there exists a unique
left-monotone measure πlc ∈ ΠM (µ, ν), which we call the left-curtain coupling.

We recall the initial example of a constrained optimal stopping problem which we considered
in Section 1.2. The trajectories of the optimal solution to this problem, as illustrated in Figure
1.1, appear to obey a monotonicity principle similar to that which the left-curtain coupling sat-
isfies in a martingale optimal transport problem. Having also observed in the previous chapter
that Monge-Ampère equations are related to both optimal transport and constrained optimal
stopping, we conjecture that there is a relationship between the constrained optimal stopping
problem which we have considered here and martingale optimal transport.

Inspired by [4] and [5], in which the authors have exposed connections between optimal transport
and Skorokhod embedding, we now turn our attention to Skorokhod embedding problems.

3.2 Skorokhod Embedding Problems

In this section, we define what is meant by a Skorokhod embedding problem, introduce some
solutions from the literature and describe this problem’s connection to optimal transport and
optimal stopping. We take our definition of the Skorokhod embedding problem from the review
of Ob&lój [23].

Let µ be a probability measure on R such that
8
R |x| dµ(x) < ∞ and

8
R x dµ(x) = 0, and

let B be standard Brownian motion on R. The problem is then to find a stopping time τ such
that

Bτ ∼ µ and (Bt∧τ )t≥0 is a uniformly integrable martingale. (3.2.1)

Note that the condition of uniform integrability can be replaced by the condition that E[τ ] < ∞,
as in the definition in [4]. This implies that

8
R x2 dµ(x) = E[τ ] < ∞.

The embedding problem was first posed by Skorokhod in 1961 [30] (translated in [31]), where
he also proposed the first solution. It is noted in [23] that, since Skorokhod’s initial work, many
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different solutions have been found using methodology from almost every area of the theory
of stochastic processes, each method having their own nice properties. For example, Chacon
and Walsh used tools from potential theory in [11] as a simple method to solve the Skorokhod
embedding problem. The Azéma-Yor stopping time suggested in [2] is more explicit and has
the property (noted in [23]) that it maximises the law of the maximum of the process. This
is actually a special case of the Chacon-Walsh solution, as shown in [12]. We will focus here
on Root’s construction, first given in [28], as it will allow us to demonstrate connections with
optimal transport and optimal stopping. We describe this construction as in [23].

Theorem 3.2.1 (Root’s construction). Let µ be a probability measure on R such that8
R x2 dµ(x) < ∞ and

8
R x dµ(x) = 0. Then there exists a barrier R ⊂ R+ × R such that

the stopping time
τ := inf{t ≥ 0 : (t, Bt) ∈ R}

solves the embedding problem (3.2.1). We say that R is a barrier if it is a closed set satisfying
the condition that (t, x) ∈ R implies (s, x) ∈ R, for any s > t, and furthermore, (+∞, x) ∈ R,
for all x ∈ [−∞,+∞], and (t,±∞) ∈ R for all t ∈ [0,+∞].

3.2.1 Connections to Optimal Stopping

Root’s solution can be characterised by a corresponding optimal stopping problem, as described
in [13]. Define the potential of any measure µ such that

8
R |x| dµ(x) < ∞ and

8
R x dµ(x) = 0 as

Uµ(x) := −
"

R
|y − x| dµ(y).

Then the optimal stopping problem of finding

u(x, t) := sup
τ≤t

Ex
4
Uλ(Xτ ) {τ=t} + Uµ(Xτ ) {τ<t}

5

yields the stopping region

R :=
9
(t, x) ∈ [0,∞]× [−∞,∞] : u(x, t) = Uλ(x)

:
.

The main result of [13] then shows that this region R is the barrier corresponding to the Root
solution of the Skorokhod embedding problem (3.2.1). In Figure 3.2, we see an example of such a
barrier R. The horizontal lines inside the barrier indicate that, in the optimal stopping problem,
if it is optimal to stop at a certain level at one time, then we should also stop if we hit that same
level at any later time.

We note that this optimal stopping problem includes a time variable, which we have not con-
sidered so far in this report. We intend to investigate this type of problem and consider its
relationship to problems of optimal stopping with constraints.

3.2.2 Connections to Optimal Transport

Another property of Root’s solution is noted in [4]. Namely, Root’s solution is optimal in the
sense that it minimises the quantity E[τ2] over all possible embeddings. This leads us to define
the optimal Skorokhod embedding problem, as in [4]. Define the set of stopped paths

S := {(f, s) : f ∈ C([0, s],R), f(0) = 0} .
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t

Bt

R

Figure 3.2: An example of the barrier in Root’s solution to the Skorokhod embedding problem,
adapted from Figure 1 of [4]. The Brownian motion starts from the origin, and the shaded region
R is the barrier. The grey horizontal lines indicate that, if the Brownian motion takes some value
x at time t1 and is inside the barrier, and if there is a later time t2 > t1 when it takes the same
value x, then it will also be inside the barrier at that later time.

and consider a functional γ : S → R. Then the optimal Skorokhod embedding problem is to find

Pγ(µ) := inf {E[γ((Bt)t≤τ , τ)] : τ solves (3.2.1)} . (3.2.2)

With this definition, we see that Root’s construction solves the optimisation problem (3.2.2) for
the functional defined by γ(f, s) = s2.

In [4], Beiglböck, Cox and Huesmann apply ideas from both the theory of optimal transport
and stochastic analysis to the optimal Skorokhod embedding problem in order to construct so-
lutions to (3.2.2) for different functionals γ. This gives rise to a wide class of solutions to the
Skorokhod embedding problem (3.2.1).

Furthermore, in [5], the left-curtain coupling from martingale optimal transport (defined in
Theorem 3.1.1) is interpreted in terms of a Skorokhod embedding problem. In particular, the
authors show in this paper that the left-curtain coupling gives rise to a barrier, as defined in
Theorem 3.2.1, from which a solution to a Skorokhod embedding problem can be constructed.

Combining this with the observations made in the previous sections of this report, we expect
a connection between the optimal Skorokhod embedding problem (3.2.2), the martingale opti-
mal transport problem (3.1.2), the Monge-Ampère equation (2.0.1) and the constrained optimal
stopping problem (1.0.1), and we intend to undertake future work to investigate this conjectured
relationship.

Outline of Future Work

We conclude by summarising the research questions which we plan to investigate in the forth-
coming PhD thesis, as described in this report. Our initial aims are as follows:
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• To complete the example of Section 1.4 using the theory of viscosity solutions described in
Section 1.5, and to investigate other reward functions f for which we can write down an
explicit value function for the constrained optimal stopping problem (1.0.1).

• To prove the stochastic representation result for the Monge-Ampère equation in Conjecture
2.2.1, to investigate the relationship between Monge-Ampère equations and escape prob-
lems, as defined in 2.2.2, and to seek a stochastic representation result for the version of
the Monge-Ampère equation (2.3.1) which arises in optimal transport.

• To study in more depth both martingale optimal transport, as described in Section 3.1.1,
and Skorokhod embedding problems, defined in Section 3.2, and to investigate connec-
tions between these and problems of stochastic optimal control and constrained optimal
stoppping.

This outline represents our views of interesting directions of research to pursue at the present
time, and we expect that several further questions of interest will arise during the course of the
PhD, as we explore in more depth the problems discussed in this report and the connections
between them.
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[6] Mathias Beiglböck and Nicolas Juillet, On a problem of optimal transport under marginal
martingale constraints, The Annals of Probability 44 (2016), no. 1, 42–106.

[7] Yann Brenier, Décomposition polaire et réarrangement monotone des champs de vecteurs,
CR Acad. Sci. Paris Sér. I Math 305 (1987), no. 19, 805–808.

[8] , Polar factorization and monotone rearrangement of vector-valued functions, Com-
munications on pure and applied mathematics 44 (1991), no. 4, 375–417.

[9] Luis A. Caffarelli, The regularity of mappings with a convex potential, Journal of the Amer-
ican Mathematical Society 5 (1992), no. 1, 99–104.

[10] Luis A Caffarelli, The Monge-Ampere equation and optimal transportation, an elementary
review, Optimal transportation and applications, Springer, 2003, pp. 1–10.

[11] Rafael V. Chacon and John B. Walsh, One-dimensional potential embedding, Séminaire de
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