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Abstract

We consider Talagrand-type transportation inequalities for the law of Brownian motion on Carnot groups. An

important example is the lift of standard Brownian motion to the Brownian rough path. We present a direct

proof on enhanced path space, which also yields equality when restricting to adapted couplings in the transport

problem. Moreover, we prove a Talagrand inequality for the heat kernel measure on Carnot groups and deduce

the inequality for the law of Brownian motion on Carnot groups via a bottom-up argument. Our study of this

enhanced Wiener measure contributes to a longstanding programme to extend key properties of Wiener measure

to the non-commutative setting of the enhanced Wiener measure, which is of central importance in Lyons’ rough

path theory. With a non-commutative sub-Riemannian state space, we observe phenomena that differ from the

Euclidean case. In particular, while a top-down projection argument recovers Talagrand’s inequality on Euclidean

space from the corresponding inequality on the path space, such a projection argument breaks down in the Carnot

group setting. We further study a Riemannian approximation of the Heisenberg group, in which case the failure of

the top-down projection can be partially overcome. Finally, we show that the cost function used in the Talagrand

inequality is a natural choice, in that it arises as a limit of discretised costs in the sense of Γ-convergence.
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1. Introduction

Let µ ∈ P(E) be a Borel probability measure on a Polish space E. Given a measurable cost function

c : E × E → [0,∞], we say that µ satisfies Talagrand’s T2 transport inequality with constant α > 0, and

write µ ∈ T2(E, c, α), if for every ν ∈ P(E) it holds that

T2
c,2(µ, ν) := inf

λ∈Π(µ,ν)

∫
E×E

c2(x, y) dλ(x, y) ≤ 2

α
H(ν∥µ),

where Π(µ, ν) denotes the set of couplings between µ and ν and H(ν∥µ) is the relative entropy of ν with

respect to µ. If the cost is induced by a metric d on E, that is c(x, y) = d(x, y), the above definition

reduces to the classical 2-Wasserstein formulation,

W 2
2 (µ, ν) ≤ 2

α
H(ν∥µ), ∀ν ∈ P(E).

We note, without going into details, that there is an important connection to concentration of measure

and the log-Sobolev inequalities by results from [OV00]. Talagrand [Tal96] first proved a T2 inequality

for the standard Gaussian measure on Rd with Euclidean cost. A T2 inequality for Rd-valued Brownian

motion with a cost given in terms of the Cameron–Martin distance first appeared in [FÜ02]. Later [Leh13]

gave a similar proof, using the intrinsic drift from [Föl86, Föl88] and Girsanov’s theorem to prove the

T2 inequality directly on Wiener space. Alternative proofs using Girsanov’s theorem also appeared in

[DGW04] and [FÜ04]. On the other hand, the T2 inequality on Wiener space can also be derived as a

consequence of the Gaussian product case. In fact, [Tal96] already considered the infinite Gaussian prod-

uct case; cf. [Rie17] and reference therein for explicit constructions. This so-called bottom-up approach

uses the tensorisation property of the T2 inequality and a truncated expansion of the Brownian motion.

As observed in [Leh13] and [Föl22], one can also recover Talagrand’s T2 inequality on Rd from the T2
inequality on path space by considering a Brownian bridge. This gives a so-called top-down approach

to Talagrand’s T2 inequality. In this paper, a first study connecting aspects of optimal transport with

rough analysis, we investigate the validity of the T2 inequality, as well as the bottom-up and top-down

approaches, when Rd is replaced by a certain Carnot group.

The advent of rough path theory (see, e.g. [Lyo98, FV10]) has highlighted the fundamental importance

of (d-dimensional) Brownian motion B lifted to the free step-2 nilpotent group (over Rd), which is an

example of Brownian motion with values in a step-2 Carnot group G. Denoted by

Bt =

(
Bt, Anti

(∫ t

0

Bs ⊗ dBs

))
,
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this process is also known as horizontal Brownian motion, enhanced Brownian motion, or Brownian rough

path, depending on authors and context. When d = 2, the relevant group is nothing but the classical

(2 + 1)-dimensional Heisenberg group H ∼= R3 with group law(
(x, y, z), (x′, y′, z′)

)
7→
(
x+ x′, y + y′, z + z′ + (xy′ − x′y)/2

)
.

Though not directly related to this work, we note that the interplay of optimal transport and Heisenberg

groups was pioneered in [AR04]; see also [AS20] for recent work in the context of Carnot groups.

Let us agree on some notation. Unless otherwise stated, µ = Law(B) denotes Wiener measure on

Ω = C0([0, T ],Rd), with Gaussian unit time marginal µ1 = N (0, Id). Similarly, call µ = Law(B) the

enhanced Wiener measure on

ΩG = C0([0, T ],G),

with (non-Gaussian) unit time marginal µ1, which we call the heat kernel measure on G. Over the

last 20 years, starting with [LQZ02], numerous properties of Wiener measure (including sample path

regularity, Cameron–Martin shifts, Schilder’s large deviations, Stroock–Varadhan support theorem) have

been extended from µ to µ, with significant benefits to stochastic analysis (see, e.g. [FV10, Lyo14, FH20]

and references therein). See also [CF26] for an abstract view. This naturally raises the question of

whether Talagrand’s T2 inequality for Gaussian measures (respectively, Wiener measure) extends to heat

kernel measures (respectively, enhanced Wiener measure) on G, and to what extent the bottom-up and

top-down approaches remain valid. In this article, we provide a reasonably complete answer to these

questions.

We prove the T2 inequality for µ with the cost function CH on ΩG,

CH(ω,ω) :=

∥h∥H, if ω = Thω, for some h ∈ H,

+∞, otherwise,

where H is the Cameron–Martin space of µ and Th is (essentially1) the translation (or shift) operator

known from rough path theory [FV10]. We give multiple strategies to prove the T2 inequality for our

cost CH on ΩG, offering both a bottom-up strategy, as well as a direct approach via an application of a

contraction principle [DGW04, Rie17] or a lifting of the result from [Leh13] to the Carnot group setting.

The bottom-up approach consists of showing a T2 inequality for the heat kernel measure µ1 on the

Carnot group and inferring the result for the enhanced Wiener measure µ by using the tensorisation

property of the Talagrand inequality. Our approach is to discretise the Brownian motion in time, rather

than to consider an expansion as in [Rie17, Föl22]. By an Otto–Villani argument [OV00, GL13], the

T2 inequality for the heat kernel measure on a Carnot group follows from a log-Sobolev inequality. The

latter is only partially available: from [Li06, Eld10] we have certain heat semigroup estimates on the

Heisenberg (and so-called H-type) groups, which imply the required log-Sobolev inequalities. Given the

correct heat semigroup estimate, our proof does not rely on an H-type setting and holds true for general

step-2 Carnot groups.

We further prove the T2 inequality for µ directly on the path space, via two different approaches. First,

we apply a contraction principle to the lift of a standard Brownian motion to deduce the result from the

T2 inequality for Wiener measure. This approach also extends to the lifts of more general Gaussian

1Contrary to the standard rough path setting, we deal here with general step-2 Carnot groups.
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processes; cf. [FV10, Chapter 15]. Alternatively, we exploit Föllmer’s intrinsic drift from [Föl86, Föl88]

to prove the T2 inequality for µ, following the strategy of [Leh13]. The latter approach gives additional

insights into so-called adapted transport inequalities. As noted in [Ald81, Las18, BBBE20a, BBBE20b],

in the case of optimal transport problems involving laws of stochastic processes, it is desirable to consider

adapted couplings rather than general couplings between the laws. We identify the optimal adapted

transport plan for the cost CH and show that equality holds in the T2 inequality when restricting to

adapted couplings.

A key difference from the Euclidean setting is that the top-down approach fails in the non-commutative

sub-Riemannian setting of Carnot groups. Indeed, in the Euclidean setting, given the T2 inequality for

Wiener measure µ, a contraction principle can be applied to deduce the T2 inequality for µ1. However, for

the enhanced Wiener measure µ, this contraction principle argument breaks down and we cannot deduce

the T2 inequality for the heat kernel measure µ1 from the corresponding inequality for µ. Considering a

Riemannian approximation (still non-commutative) to the Carnot group, we find that the validity of the

top-down approach is partially recovered. Given the T2 inequality for the law µε of Brownian motion on

the approximating Riemannian manifold, the contraction principle implies that µε
1 satisfies a Tp inequality

for p ∈ [1, 2), but not for p = 2.

We remark that our cost CH differs from the one considered in [Rie17, Corollary 1.4], which is defined

in terms of the Cameron–Martin norm of the difference of the path in the group projected onto its first

component, and which turns out to be suboptimal (see the discussion in Section 2.3). Our cost CH is a

natural choice in the following sense: CH can be obtained as the variational limit (more precisely, the

Γ-limit; see Section 6.4) of “finite-dimensional costs” Cn that arise in our bottom-up approach:

C2
n(ω,ω) = 2n

2n∑
k=1

d2CC(ωtnk−1,t
n
k
,ωtnk−1,t

n
k
), ω,ω ∈ ΩG,

where dCC denotes the Carnot–Caratheodory metric on G. We prove in Section 6.4 that the Γ-convergence

of the cost functions Cn also leads to the Γ-convergence of the optimal transport costs TCn,2(µ, ·) to

TCH,2(µ, ·).
Note that, while our direct approach to proving the T2 inequality gives an elegant and short proof that

holds in greater generality, the bottom-up approach, and in particular the Γ-convergence, yields clear

information on the choice of the most natural cost function.

For the reader’s convenience we summarise our findings as concise statements.

Theorem 1.1 (Direct approach, cf. Theorem 3.3, and extensions in Section 4). The measure µ on ΩG

satisfies the T2 inequality µ ∈ T2(ΩG, CH, 1).

Theorem 1.2 (Bottom-up, cf. Theorem 6.6). Suppose that there exists α > 0 such that µ1 ∈ T2(G, dCC, α).

Then µ ∈ T2(ΩG, CH, α).

Theorem 1.3 (T2 on group, cf. Theorem 5.3). Let G be an H-type group. Then there exists α > 0 such

that µ1 ∈ T2(G, dCC, α).
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Theorem 1.4 (Adapted couplings, cf. Theorem 3.3). Let ν be a probability measure on ΩG with ν ≪ µ.

Then the optimal adapted coupling between µ and ν is given explicitly and

Tad
CH,2(µ,ν)

2 = 2H(ν∥µ).

Theorem 1.5 (Cost approximation, cf. Corollary 6.22 and Theorem 6.28).

(i) Pointwise convergence Cn → CH fails (by example),

(ii) Γ-convergence2 Cn
Γ→ CH holds with respect to the uniform topology on ΩG ×ΩG,

(iii) TCn,2(µ, ·)
Γ−→ TCH,2(µ, ·) with respect to the weak topology on P(ΩG).

Theorem 1.6 (Top-down – validity vs. failure). A contraction principle

(i) gives the implication µ ∈ T2(Ω, ∥.− .∥H, α) =⇒ µ1 ∈ T2(Rd, |.− .|, α),
(ii) does not give µ ∈ T2(Ω, CH, α) =⇒ µ1 ∈ T2(G, dCC, α

′), no matter α, α′ > 0,

(iii) gives a weak implication µε ∈ T2(ΩHε , C
ε
H, α) =⇒ µε

1 ∈ Tp(Hε, dε, α̃(ε, p)), for p ∈ [1, 2), where

(Hε, dε) is a Riemannian approximation to the (2 + 1)-dimensional Heisenberg group.

The paper is structured as follows. Section 2 contains preliminary results on Talagrand inequalities

and introduces our setting of step-2 Carnot groups. In Section 3, we present a direct approach to proving

the T2 inequality for the law of Brownian motion on a Carnot group via Föllmer’s intrinsic drift, and we

show equality for the case of adapted transport plans. In Section 4, we prove the T2 inequality for general

Gaussian rough paths by a direct approach using a contraction principle. Section 5 studies the Talagrand

inequality for the heat kernel measure µ1 on Carnot groups, as well as its connection to log-Sobolev

inequalities and heat semigroup estimates. Section 6.1 presents a bottom-up approach to proving the T2
inequality for µ as a consequence of the results of Section 5. In Section 6.2, we show by example that

we cannot project the T2 inequality for µ down to a T2 inequality for µ1, and that the cost functions Cn

blow up pointwise. In Section 6.3, we study a Riemannian approximation of the Heisenberg group, for

which we can partially overcome the issues of the cost blow-up and failure of projection. In Section 6.4,

we prove the Γ-convergence of the costs Cn to CH. We conclude in Section 7 by commenting on the

extension of our results to higher order Carnot groups.

2. Setting

In this section, we first collect relevant definitions and results related to Talagrand inequalities. Next,

we define our setting of step-2 Carnot groups and introduce a Brownian motion with paths in a Carnot

group, as well as the lift and shift operation on paths. Using the shift operator, we define a suitable cost

function CH, which appears in our T2 inequality.

2.1. Preliminaries on Talagrand inequalities. Given two Borel probability measures µ, ν on a Polish

space E, let Π(µ, ν) denote the set of probability measures on E×E with marginals µ, ν. Such measures

are called couplings (or transport plans). The relative entropy of ν with respect to µ is defined as

H(ν∥µ) =


∫
E
log dν

dµ dν if ν ≪ µ,

+∞ otherwise.

2Recall that Γ-convergence is a natural notion of convergence from the theory of calculus of variations for sequences of
functionals, which guarantees the convergence of minimisers and minima.
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Definition 2.1. Let E be a Polish space and let c : E × E → [0,∞] be a measurable function. We say

that a Borel probability measure µ satisfies the cost-information inequality on E with cost c, parameter

α > 0, and exponent p ∈ [1,∞) if, for any Borel probability measure ν on E,

Tc,p(µ, ν) ≤
√

2

α
H(ν∥µ), where Tc,p(µ, ν) :=

(
inf

λ∈Π(µ,ν)

∫ ∫
cp(x, y) dλ(x, y)

) 1
p

.

We write µ ∈ Tp(E, c, α) and say that µ satisfies a Tp inequality.3

In particular, we are interested in the case of p = 2. On Rd, Talagrand [Tal96] proved that the standard

Gaussian measure satisfies a T2 inequality with Euclidean cost. Talagrand’s result has since been lifted

to the Wiener measure on path space.

Let B denote a standard Brownian motion on Rd, let µ1 = Law(B1) denote the standard Gaussian

measure on Rd, and let µ = Law(B) denote the Wiener measure on Ω := C0([0, 1],Rd). The Cameron–

Martin space for µ is defined as

(2.1) H := {h : [0, 1] → Rd absolutely continuous : ḣ ∈ L2, h0 = 0 } =W 1,2
0 ([0, 1],Rd),

and the Cameron–Martin norm ∥ · ∥H is defined by ∥h∥2H =
∫ 1

0
|ḣt|2 dt, for h ∈ H. Throughout the text,

for p ∈ [1,∞], W 1,p([0, 1],Rd) denotes the usual Sobolev space, and W 1,p
0 ([0, 1],Rd) the subspace such

that x0 = 0 for x ∈W 1,p
0 ([0, 1],Rd).

Define the Cameron–Martin cost cH : Ω× Ω → [0,∞] by

(2.2) cH(x, y) :=

∥y − x∥H, y − x ∈ H,

+∞ otherwise.

Then the Wiener measure µ satisfies the T2 inequality (cf. [FÜ02, DGW04, FÜ04, Leh13]):

(2.3) µ ∈ T2(Ω, cH, 1).

Contraction principle. The following contraction principle for Tp inequalities is a special case of [Rie17,

Lemma 4.1].

Lemma 2.2. Let (E, d), (S, ρ) be metric spaces, with (E, d) a Polish space, let c : E × E → [0,∞] and

c̃ : S × S → [0,∞] be Borel-measurable functions, and let η be a Borel probability measure on E. Let

ψ : E → S and L : E → [0,∞] be measurable functions such that

c̃(ψ(x), ψ(x)) ≤ L(x)c(x, x),

for all x, x ∈ E0, where E0 ⊆ E satisfies η(E0) = 1.

Suppose that η ∈ T2(E, c, α), for some α ∈ (0,∞). Then, for any p ∈ [1, 2] such that L ∈ Lq(η) for

q = 2p
2−p ∈ [2,∞], we have ψ♯η ∈ Tp(S, c̃, α∥L∥−2

Lq(η)).

Remark 2.3. In particular, the contraction principle in Lemma 2.2 allows us to upgrade the topology

used in Theorem 1.1 from the uniform topology to the β-Hölder topology for β ∈ ( 13 ,
1
2 ) (cf. [FV10, Section

8] for the definition of this topology). Indeed, for E = C0([0, 1],G) and µ ∈ P2(E) the law of Brownian

3Since cp is just another instance of a measurable function on E×E, there is no loss of generality in taking p = 1. However,
we find this definition useful later in the paper.
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motion on G, we have that µ(Ẽ) = 1, where Ẽ = Cβ
0 ([0, 1],G) for some β ∈ ( 13 ,

1
2 ). Thus, defining

c̃ = c|Ẽ×Ẽ , the result of Theorem 1.1 that µ ∈ T2(E, c, α) extends to µ ∈ T2(Ẽ, c̃, α) by Lemma 2.2.

We remark that such a direct upgrade of the topology is not observed in other settings. For example,

showing that a large deviation principle can be lifted from the uniform topology to the Hölder topology

is significantly more involved; see [FV05, Theorem 39], whose proof is based on the inverse contraction

principle for large deviations [DZ10, Theorem 4.2.4].

Adapted Tp inequalities. For a metric space (S, d), the p-Wasserstein distance Td,p metrises the weak

topology on Pp(S). When elements of S should be regarded as stochastic processes, however, this

topology is not sufficient to capture the flow of information encoded in the filtrations associated to the

processes. The adapted weak topology and adapted Wasserstein distance have been shown to be more

suitable; see, e.g. [Ald81, Las18, BBBE20a, BBBE20b]. The adapted Wasserstein distance is a special

case of the adapted (also called bicausal) optimal transport problem, defined as follows.

Definition 2.4. Let E be a Polish space and µ, ν ∈ P(C([0, 1], E)). Let λ ∈ Π(µ, ν) and let X, Y be

C([0, 1], E)-valued random variables with λ = Law(X,Y ). Write FX (resp. FY ) for the completion of

the natural filtration of X (resp. Y ) with respect to µ (resp. ν). We say that λ is an adapted coupling if

the following conditional independence holds under λ: for all t ∈ [0, 1],

FY
t is independent of FX

1 given FX
t and FX

t is independent of FY
1 given FY

t .

We denote the set of all such couplings by Πad(µ, ν). For a measurable function c : C([0, 1], E) ×
C([0, 1], E) → [0,∞], define the adapted optimal transport problem

Tad
c,p(µ, ν) :=

(
inf

λ∈Πad(µ,ν)

∫ ∫
cp(x, y) dλ(x, y)

) 1
p

.

We say that µ ∈ P(C([0, 1], E)) satisfies an adapted Tp inequality for some p ∈ [1,∞) if there exists α > 0

such that

Tad
c,p(µ, ν) ≤

√
2

α
H(ν∥µ).

In this adapted setting, [Las18, Lemma 5] and [Föl22, Theorem 3] show that Wiener measure satisfies

an adapted T2 inequality with α = 1 and that equality holds; i.e.

Tad
cH,2(µ, ν) =

√
2H(ν∥µ).(2.4)

Remark 2.5. For continuous-time stochastic processes, [BBP+25] give an alternative definition of the

adapted optimal transport problem and adapted Wasserstein distance that has additional desirable topo-

logical properties. The value of this problem is defined such that it lies between Tc,p and Tad
c,p. Thus, it is

immediate that an adapted T2 inequality still holds in this setting. However, equality has not been studied

in this case, and we leave this to future work, choosing to focus on the definition given in Definition 2.4

in the present paper.

Remark 2.6. For discrete-time processes taking values in some Polish space E with n time steps, one can

also consider their laws, which are probability measures on En, and define an adapted optimal transport

problem analogously to Definition 2.4. In this setting, [Par26, Corollary 1.8] shows that the T1 inequality

is equivalent to its adapted counterpart. Moreover, [Par26, Corollary 1.9] shows that, for probability
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measures with finite exponential moment, an adapted Tp inequality holds for all p > 1, with constant

given explicitly in terms of the exponential moment and number of time steps, thus extending the results

of [BV05] to the adapted setting. For a standard Gaussian on Rn, [BBLZ17, Proposition 5.10] prove an

adapted T2 inequality using a dynamic programming argument. As noted in [BBLZ17, Remark 5.11],

equality cannot generally be expected in the discrete-time setting.

2.2. Step-2 Carnot groups. Let G be a step-2 Carnot group, i.e. a connected, simply connected nilpo-

tent Lie group whose Lie algebra g of left-invariant vector fields has dimension m = d1+ d2 and admits a

stratification g = V1 ⊕V2 with V2 = [V1,V1], [V1,V2] = {0}. Fix an adapted basis (V1, . . . , Vm) such that

(V1, . . . , Vd1) is a basis of V1. Using exponential coordinates, we can and will identify G with Rm,

G ∋ x = (x1, . . . , xd1 , xd1+1, . . . , xm) = (x(1), x(2)) ∈ Rd1 ⊕ Rd2 ∼= Rm,

with group law in Baker–Campbell–Hausdorff form,

(2.5) (x,y) 7→ xy = x+ y +
1

2
[x,y].

It is not restrictive to assume that Vi(0) = ei, the canonical basis vectors of Rm. For x ∈ G, let ℓx : G → G

denote the left multiplication map defined by ℓxy = xy, for y ∈ G, and let dℓx : TG → TG denote its

differential. By left invariance, Vi(x) = dℓxei, i = 1, . . . ,m, x ∈ G.

Endow g with a left-invariant metric ⟨·, ·⟩ : g×g → R that makes the Vi orthonormal. Define the struc-

ture constants wij ∈ Rd2 , for i, j ∈ {1, . . . , d1}, by wk
ij := ⟨[Vi, Vj ], Vk⟩ = −wk

ji, for k ∈ {d1+1, . . . ,m}; cf.
[BLU07, Section 3.2]. The group law in (2.5) can then be written as

(x,y) = ((x(1), x(2)), (y(1), y(2))) 7→ xy =
(
x(1) + y(1), x(2) + y(2) +

1

2

∑
i<j

wij(x
(1)
i y

(1)
j − x

(1)
j y

(1)
i )
)
.

For notational brevity, we introduce the operator W : Rd1×d1 → Rd2 given in terms of the structure

constants by

WA =

d1∑
i,j=1

wijAij =
1

2

d1∑
i,j=1

wij(Aij −Aji) =
∑
i<j

wij(Aij −Aji), A ∈ Rd1×d1 .

With this definition, we can rewrite the group law for x = (x(1), x(2)), y = (y(1), y(2)) as

xy =
(
x(1) + y(1), x(2) + y(2) +

1

2
W(x(1) ⊗ y(1))

)
.

Let ∆G := 1
2

∑d1

i=1 V
2
i denote the sub-Laplacian on G and define the horizontal gradient ∇G by its action

∇Gf :=

d1∑
i=1

(Vif)Vi ∈ V1, for f : G → R.

Let HG ⊂ TG be the horizontal tangent bundle of the group G, i.e. the left-invariant sub-bundle of

the tangent bundle TG such that HeG = {V (0) : V ∈ V1 }, where e is the identity element of G. For

i ∈ {1, 2}, define the projection operator πi : G → Rdi by

(2.6) πi(x
(1), x(2)) = x(i).
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Dilation on G by a factor s > 0 takes the form

(2.7) δs((x
(1), x(2))) := (sx(1), s2x(2)).

The Haar measure on G coincides with Lebesgue measure Lm on Rm. For measurable E ⊆ Rm, we have

(2.8) Lm(δsE) = sQLm(E),

where Q = d1 + 2d2 is called the homogeneous dimension of G.

We endow G with the Carnot–Carathéodory structure induced by HG, as follows. An absolutely

continuous curve γ : [0, 1] → G is called horizontal if γ̇t ∈ Hγt
G for almost every t ∈ [0, 1]. The Carnot–

Carathéodory distance between x, y ∈ G is then defined as

dCC(x, y) = inf

{∫ 1

0

|γ̇t|dt : γ horizontal, γ0 = x, γ1 = y

}
,(2.9)

where | · | =
√

⟨·, ·⟩.
We remark that horizontal paths necessarily satisfy, for almost every t ∈ [0, 1],

(2.10) γ̇t =

d1∑
i=1

Vi(γt)⟨γ̇t, Vi(γt)⟩ =:
d1∑
i=1

Vi(γt)ḣ
i
t,

and hence are in one-to-one correspondence with absolutely continuous h ∈ AC([0, 1],Rd1). We have that

h = π1γ for the first-level projection π1 from (2.6).

Definition 2.7 (Canonical lift). The canonical lift Ψ: AC([0, 1],Rd1) → C([0, 1],G) is defined by Ψ(h) :=

γ, where γ ∈ C([0, 1],G) and h ∈ AC([0, 1],Rd1) are related by (2.10). Explicitly, we have

γ̇
(1)
t = ḣt, γ̇

(2)
t =

1

2

∑
i,j

wijh
i
tḣ

j
t =

1

2
W
(
ht ⊗ ḣt

)
, for t ∈ [0, 1].

By the Chow–Rashevskii theorem, dCC is in fact a distance, which is also left-invariant and homoge-

neous with respect to the dilations defined in (2.7). The metric space (G, dCC) is a Polish and geodesic

space (see, e.g. [AS20, Section 2.4]). We let | · |G denote the norm induced by dCC on G. One can also

equip G with the gauge distance dg defined by

dg(x, y) = |(y−1x)(1)|+ |(y−1x)(2)| 12 ,

for x, y ∈ G. All homogeneous norms on G are equivalent. In particular, there exists a constant κ ∈ (0,∞)

such that

1

κ
dg(x, y) ≤ dCC(x, y) ≤ κ dg(x, y);(2.11)

see, e.g. [BLU07, Proposition 5.1.4].

Remark 2.8 (Metric derivative). The metric derivative of a curve γ : [0, 1] → G at t ∈ [0, 1] is defined

by

|γ̇t|dCC
:= lim

s→t

dCC(γ(s), γ(t))

|s− t|
.

If γ is absolutely continuous, the metric derivative exists for almost every t ∈ [0, 1], and |γ̇t|dCC
= |γ̇t|;

see [Mon01, Theorem 1.3.5]. Moreover, the metric derivative is minimal in the sense that |γ̇t|dCC
≤ m for

all m ∈ L1([0, 1]) with dCC(γ(s), γ(t)) ≤
∫ t

s
m(r) dr, 0 ≤ s < t ≤ 1; see [AGS08, Theorem 1.1.2].
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Remark 2.9 (Free step-2 Carnot groups). The free step-2 nilpotent case G = Fd1,2 amounts to G ∼=
Rd1 ⊕ so(d1) (after identifying the exterior algebra ∧2Rd1 with so(d1)). The space so(d1) is spanned by

{ e[i,j] : 1 ≤ i < j ≤ d1 }, where e[i,j] := 1
2 (ei⊗ ej − ej ⊗ ei), and has dimension d∗2 = d1(d1−1)/2. Writing

the bracket as [ei, ej ] = e[i,j], the structure constants w
[p,q]
ij reduce to Kronecker symbols.

All other step-2 Carnot groups can be seen as quotient groups of the free group, captured by d2 ≤ d∗2

and the structure constants. For instance, the (2n + 1)-dimensional Heisenberg group Hn ∼= R2n ⊕ R

has d1 = 2n, d2 = 1, and w1,2 = w3,4 = · · · = w2n−1,2n = 1 (flip sign upon interchanging indices, zero

otherwise). For d1 = 2, we recover the familiar example H = H1 ∼= F2,2. Letting (x, y, z) ∈ H denote a

canonical element of H, the left-invariant vector fields are given by

V1 = ∂x + 1
2y∂z, V2 = ∂y − 1

2x∂z, V3 = [V1, V2] = ∂z.

Remark 2.10 (Heisenberg-type groups). A special class of step-2 Carnot groups is the class ofHeisenberg-

type groups, or H-type groups for short, which enjoy additional properties. Most importantly for us,

Talagrand inequalities are known to hold on H-type groups; see Section 5.3. We refer the interested

reader to [BLU07, Chapter 18].

A step-2 Carnot group G ∼= Rd1 ⊕Rd2 is an H-type group if, for each z ∈ Rd2 , there exists a linear map

JG(z) : Rd1 → Rd1 such that

JG(z)
2 = −|z|2id and

〈
W(x⊗y), z

〉
Rd2

= ⟨JG(z)x, y⟩Rd1 ∀x, y ∈ Rd1 .

Note that, necessarily, d1 ∈ 2N and d2 ≤ d1/2. As the name suggests, the Heisenberg group Hn ∼=
R2n ⊕ R is the canonical example of an H-type group, where the map JHn : R2n → R2n is given by

JHn(z) =

(
0 −zIn
zIn 0

)
, z ∈ R.

Brownian motion on G. Let B = (Bt)t∈[0,1] be a d1-dimensional Brownian motion on a filtered probability

space (Ω,F , (Ft)t≥0,P). We define the Brownian motion B on G as the continuous G-valued Markov

process with generator ∆G, that is obtained by solving the SDE

dBt =

d1∑
i=1

V i(Bt) dB
i
t,(2.12)

more explicitly written as

dB
(1)
t = dBt, dB

(2)
t =

1

2
W(Bt ⊗ dBt).

Note that, since B = (B1, . . . , Bd1) is a standard Brownian motion, there is no difference between Itô

and Stratonovich integration here.

The Brownian motion B takes values in the space

ΩG := C0([0, 1],G)

of continuous G-valued paths started from the origin. We write µ = Law(B) and µ = Law(B), and

µt = Law(Bt), µt = Law(Bt), for t > 0. For a path ω ∈ ΩG, let ωs,t = ω−1
s ωt, s ≤ t, denote its

increments.
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We equip the space ΩG with the uniform topology induced by the metric d∞ defined by

d∞(ω,ω) := sup
t∈[0,1]

dCC(ωt,ωt).(2.13)

Note that (ΩG, d∞) is a Polish space.

By Hörmander’s theorem, ∆G is a hypoelliptic operator, and so the associated heat kernel p : (0,∞)×
G → (0,∞) is smooth [Hör67, Koh73, Hai11, BB15]. Note that, for all t > 0, the density of µt is

pt : G → (0,∞). We also define the heat semigroup Pt = et∆G , for t > 0, by

Ptf(x) =

∫
G
f(xy−1)pt(y) dy =

∫
G
f(y)pt(y

−1x) dy, x ∈ G,(2.14)

for any f ∈ L1(µt), with P0 equal to the identity operator.

Shifting G-valued paths. Let AC0([0, 1],Rd) denote the space of absolutely continuous curves started from

the origin, and recall the canonical lift Ψ: AC0([0, 1],Rd1) → ΩG from Definition 2.7. Since (G, dCC) is

a geodesic space, the following approximation lemma is immediate (cf. [FV10, Lemma 5.19, Theorem

7.32]).

Lemma 2.11 (Geodesic approximations). Every continuous G-valued path ω on [0, T ] is the uniform

limit of absolutely continuous horizontal curves; i.e. ωn = Ψ(ωn), with ωn ∈ AC0([0, 1],Rd1) and Ψ

defined in Definition 2.7.

We now extend the canonical lift to a lift map on the space Ω = C0([0, 1],Rd1) of continuous curves

started from the origin. Note that the geodesic approximation of ω = (ω(1),ω(2)) from Lemma 2.11

depends on both ω(1) and ω(2). Thus we also introduce an approximation based only on ω(1) in order

to extend the canonical lift. For a continuous path ω ∈ Ω, let ω̂n ∈ AC0([0, 1],Rd1) denote the piecewise-

linear approximation of ω on the dyadic grid (k2−n)k∈{0,...,2n}, for n ∈ N, and note that ω̂n → ω with

respect to the uniform topology on Ω.

Definition 2.12. (Lift) Extend the canonical lift Ψ: AC0([0, 1],Rd1) → ΩG to the lift map Ψ: Ω → ΩG

by

Ψ(ω) :=

limn→∞ Ψ(ω̂n), if the limit exists,

0, otherwise,
(2.15)

for ω ∈ Ω. Define the domain of Ψ as Dom(Ψ) := {ω ∈ Ω : limn→∞ Ψ(ω̂n) exists } ⊂ Ω.

The following statement holds by a minor modification to the proof of [FV10, Corollary 13.19] in the

general step-2 Carnot setting.

Proposition 2.13. Let B be a d1-dimensional Brownian motion. Then B as defined in (2.12) satisfies

B = Ψ(B) = limn→∞ Ψ(B̂n) almost surely. In particular, it follows that µ(Dom(Ψ)) = 1.

Having defined the lift Ψ for general curves ω ∈ C0([0, 1],Rd1), we can now formulate the following

lemma relating absolutely continuous measures ν ≪ µ on ΩG with absolutely continuous measures ν ≪ µ

on Ω.

Lemma 2.14. Let ν be a Borel probability measure on ΩG. Then ν ≪ µ if and only if there exists a

Borel probability measure ν on Ω such that ν ≪ µ and ν = Ψ♯ν.
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Proof. First suppose that there exists ν ≪ µ with ν = Ψ♯ν. Then, for any Borel A ⊆ ΩG with µ(A) = 0,

we have that µ(Ψ−1(A)) = µ(A) = 0, and so

ν(A) = ν(Ψ−1(A)) = 0.

Now suppose that ν ≪ µ. Let ρ := dν
dµ and define the measure ν via dν

dµ = ρ ◦ Ψ so that ν ≪ µ. By

Proposition 2.13, µ(ΩG \Ψ(Ω)) = 0 and µ = Ψ♯µ. Therefore

ν(Ω) =

∫
Ω

ρ(Ψ(ω))µ(dω) =

∫
Ψ(Ω)

ρ(ω)µ(dω) =

∫
ΩG

ρ(ω)µ(dω) = 1,

and so ν is a probability measure on Ω. Moreover, for any Borel measurable A ⊂ ΩG,

ν(A) =

∫
A

ρ(ω)µ(dω) =

∫
Ψ−1(A)

ρ(Ψ(ω))µ(dω) =

∫
Ψ−1(A)

ν(dω) = ν(Ψ−1(A))

Hence ν = Ψ♯ν. □

We show that the following shift map is well defined in Proposition 2.16 below.

Definition 2.15. (Shift map) For h ∈ AC0([0, 1],Rd1) define the shift map Th : ΩG → ΩG by

Thω = lim
n→∞

Ψ(ωn + h), ω ∈ ΩG,(2.16)

where (ωn)n∈N denotes the geodesic approximation from Lemma 2.11.

Proposition 2.16. The shift map defined in Definition 2.15 satisfies the following:

(i) For h ∈ H, the shift map Th is well defined.

(ii) For X = (X(1),X(2)) ∈ ΩG and h ∈ H the shift map ThX is explicitly given by

(ThX)
(1)
t = X

(1)
t + ht, (ThX)

(2)
t = X

(2)
t +

1

2
W
(
X1
t + X2

t + X3
t

)
,

where

dX1
t = X

(1)
t ⊗ dht, dX2

t = ht ⊗ dX
(1)
t , dX3

t = ht ⊗ dht.

(iii) If X is given by X = Ψ(X) for X ∈ Dom(Ψ), then, for h ∈ H,

ThX = ThΨ(X) = Ψ(X + h).(2.17)

(iv) The map AC0([0, 1],Rd1)×ΩG → ΩG, (h,X) 7→ ThX is continuous.

Proof. If X = Ψ(X) is an absolutely continuous horizontal curve, we have ThX = Ψ(X + h), for

h ∈ H. Then (ii) follows by definition of the lift on AC0([0, 1],Rd1). The representation of (ii), with

cross integrals in X1,X2, remains meaningful when X is only continuous, by basic properties of Riemann–

Stieltjes integration. By continuity properties of Riemann–Stieltjes integration, we obtain that the limit

in (2.16) exists, so that (i) and (ii) follow.

Now let X ∈ Dom(Ψ), so that X = Ψ(X) = limn→∞ Ψ(X̂n) for the piecewise linear approximation

(X̂n). Let h ∈ H. Then X(1) = limn→∞ X̂n and X(2) = limn→∞
1
2WX0,n, where dX0,n

t = X̂n
t ⊗ dX̂n

t .

By the definition of Ψ on AC0([0, 1],Rd), we have that

Ψ(X̂n + h) =
(
X̂n + h,

1

2
W(X0,n

t + X1,n
t + X2,n

t + X3
t )
)
,
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with X1,n, X2,n defined as in (ii) with X replaced by X̂n, and X3 defined as in (ii). By continuity of the

Riemann–Stieltjes integral and (ii), we deduce that limn→∞ Ψ(X̂n + h) = ThΨ(X). This proves (iii).

Finally, (iv) also follows from continuity properties of the Riemann–Stieltjes integral and the repre-

sentation from (ii). □

Remark 2.17. As is plain from Proposition 2.16, part (ii), we can translate any X = (X(1),X(2)) ∈ ΩG

in the direction of any absolutely continuous h. The situation is more complicated when dealing with

Carnot groups of level strictly greater than 2, cf. [FV10, Section 9.4.6], or when h has less regularity, as

is the case for Cameron–Martin paths of fractional Brownian motion with Hurst parameter H < 1/2; cf.

Section 4. In these cases, one has to incorporate suitable p-variation or Hölder rough path regularity on

the path space of X.

Remark 2.18. For any h ∈ H and X ∈ ΩG, manipulating the expression for ThX from Proposition 2.16

gives X−1
s,t (ThX)s,t = (Z

(1)
s,t ,Z

(2)
s,t ), for s, t ∈ [0, 1], s ≤ t, where

Z
(1)
s,t = hs,t, Z

(2)
s,t =

1

2

(
X1
s,t + X2

s,t + X3
s,t + 2Xt ⊗ hs − (Xs ⊗ hs +Xt ⊗ ht + hs ⊗ ht)

)
.

Also define h = Ψ(h). Then, after integrating by parts, we find that, for any s, t ∈ [0, 1] with s ≤ t,

θs,t := h−1
s,tX

−1
s,t (ThX)s,t =

(
0,

∫ t

s

Whs,r ⊗ dXr

)
.

The increments θs,t can be interpreted as an error of non-commutativity between the increments of the

shifted path ThX and the increments of the (right-)translation Xh by the lifted path h.

We now use the shift map to define a cost function on ΩG.

Definition 2.19. Define a cost function CH : ΩG ×ΩG → [0,∞] by

(2.18) CH(X,Y ) :=

∥h∥H, if Y = ThX, for some h ∈ H,

+∞, otherwise.

Lemma 2.20. The cost CH : ΩG ×ΩG → [0,∞] is lower semicontinuous.

Proof. Let X,Y ∈ ΩG and let (Xn), (Y n) ⊂ ΩG be sequences such that (Xn,Y n) → (X,Y ). We may

assume that there exists a subsequence nk → ∞ such that Y nk = ThnkXnk , where hnk = π1Y
nk −

π1X
nk ∈ H, and lim infn→∞ CH(Xn,Y n) = limk→∞ CH(Xnk ,Y nk) =: I <∞. Then we have that

I = lim
k→∞

CH(Xnk ,Y nk) = lim inf
k→∞

∥hnk∥H ≥ ∥h∥H,

where h = π1Y − π1X ∈ H. By the continuity of the shift shown in Proposition 2.16 (iv), Y = ThX,

and so CH(X,Y ) = ∥h∥H. □

2.3. Discussion on the choice of the cost function CH. The choice of cost function CH is natural

in the sense that it arises as the Γ-limit of the sequence Cn, as shown in Section 6.4. Moreover, CH has

the crucial property that whenever H(ν∥µ) = +∞, also TCH,2(µ,ν) = +∞. Indeed, supposing that

TCH,2(µ,ν) <∞, there exists a coupling λ ∈ Π(µ,ν) such that

λ({ (ω,ω) ∈ ΩG ×ΩG : ω = Tω−ωω, ω − ω ∈ H}) = 1,
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and
∫
C2

H(ω,ω) dλ(ω,ω) < ∞. We have that µ = Ψ♯µ, by Proposition 2.13, and combining this with

(2.17) from Proposition 2.16 gives

λ({ (ω,ω) ∈ ΩG ×ΩG : ω = Ψ(ω), ω = Ψ(ω), ω − ω ∈ H}) = 1.

Thus there exists ν ∈ P(Ω) such that ν = Ψ♯ν. By Itô representation and Girsanov’s theorem, we also

have that ν ≪ µ. Hence ν = Ψ♯ν ≪ Ψ♯µ = µ, and H(ν∥µ) <∞.

This is in contrast to the cost function C̃H := cH ◦ (π1 × π1) : ΩG ×ΩG → [0,∞], which appears in the

cost-information inequality in [Rie17, Corollary 1.4]. Indeed, consider the Brownian motion B = (B,A)

on the Heisenberg group G ∼= R2 ⊕ R. Let ν = Law(X), where X = (B,X) is defined as follows. Let

M ∈ (0,∞), and define X0 = 0 and Xs,t = As,t + (t − s)M , for all s, t ∈ [0, 1] with s < t. Since X only

differs from B in the second component, we see that

0 ≤ T2
C̃H,2

(µ,ν) ≤ E
[
C̃2

H(B,X)
]
= E

[
c2H(B,B)

]
= 0.

However, ν is not absolutely continuous with respect to µ. Indeed, supposing that ν ≪ µ, Lemma 2.14

implies that ν = Ψ♯ν for some probability measure ν ≪ µ. It follows that ν(Ψ(Ω)) = ν(Ω) = 1. On

the other hand, since ν = Law(X) with X = (B,X) ̸= Ψ(B), we see that ν(Ψ(Ω)) < 1, which is a

contradiction. Hence H(ν∥µ) = +∞.

3. Talagrand for Brownian motion on Carnot groups – Direct approach via Föllmer

drift

In this section, we give a first proof of Talagrand’s T2 inequality for the law of Brownian motion on

a step-2 Carnot group. We follow the strategy of [Leh13] and [Föl22], using Föllmer’s intrinsic drift

from [Föl86, Föl88]. Moreover, we show that equality is attained in the T2 inequality when restricting to

adapted couplings, as was shown in the classical case in [Las18, Lemma 5] and [Föl22, Theorem 3].

We first give a characterisation of adapted couplings on P(ΩG ×ΩG). In particular, we show that our

definition of adapted couplings in Definition 2.4 is consistent with that of [Föl22, Definition 1].

Lemma 3.1. Suppose that ν ≪ µ. Then λ ∈ Π(µ, ν) is an adapted coupling if and only if there exists a

filtered probability space (Ω̃,F , (Ft),Q) on which processes X, Y are defined such that X is a Brownian

motion, Y is an adapted process, and λ = Law(X,Y ) under Q.

Suppose that ν ≪ µ. Then λ ∈ Π(µ,ν) is an adapted coupling if and only if there exists ν ≪ µ and

an adapted coupling λ ∈ Πad(µ, ν) such that λ = (Ψ×Ψ)♯λ.

Proof. Suppose that ν ≪ µ. By [Las18, Lemma 4], our Definition 2.4 of adapted couplings is equivalent

to the symmetric counterpart of [Las18, Definition 1] (see [Las18, Section 4.1]). Then the first claim

follows from [Las18, Propositions 3 and 4].

Now suppose that ν ≪ µ. By Lemma 2.14, there exists ν ≪ µ such that ν = Ψ♯ν. If X is an Rd1 -

valued process with natural filtration (Ft)t∈[0,1] completed with respect to the law of X, and X = Ψ(X)

is a G-valued process with natural filtration (F t)t∈[0,1] completed with respect to the law of X, then

F t = Ψ(Ft), for all t ∈ [0, 1]. Since µ = Ψ♯µ and ν = Ψ♯ν, we have that λ ∈ Πad(µ,ν) if and only if

λ = (Ψ×Ψ)♯λ for some λ ∈ Πad(µ, ν). □

Remark 3.2. By Lemma 3.1, if λ ∈ Πad(µ,ν), then there exist X = Ψ(X), Y = Ψ(Y ) defined on some

filtered probability space (Ω̃,F , (Ft),Q) such that λ = LawQ(X,Y ), where X is a Brownian motion on
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G and Y is an adapted G-valued process, and LawQ denotes the law under Q. Then, letting EQ denote

expectation with respect to Q, we have∫
C2

H(ω,ω) dλ = EQ[C
2
H(X,Y )].

We now prove the main result of this section, showing that µ satisfies a T2 inequality, and that equality

holds when restricting to adapted couplings.

Theorem 3.3. Let ν ≪ µ. Then there exists ν ≪ µ such that ν = Ψ♯ν, and there exists a predictable

process bν on Rd with bν ∈ L2, ν-almost surely, such that Bν := B−
∫ ·
0
bνt dt is a Brownian motion under

ν, and λ∗ = Lawν(Ψ(Bν),Ψ(B)) is the unique optimal adapted coupling of µ and ν with

TCH,2(ν,µ)
2 ≤ Tad

CH,2(µ,ν)
2 = Eν [C

2
H(Ψ(Bν),Ψ(B))] = 2H(ν∥µ).(3.1)

In particular, µ ∈ T2(ΩG, CH, 1).

Proof. By Lemma 2.14, there exists a probability measure ν on Ω with ν ≪ µ and Ψ♯ν = ν. Writing

ρ := dν
dµ , we have dν

dµ = ρ ◦Ψ. Since µ(ΩG \Ψ(Ω)) = 0, by Proposition 2.13, we obtain that

H(ν∥µ) =
∫
Ψ(Ω)

ρ(ω) log(ρ(ω)) dµ(ω) =

∫
Ω

ρ(Ψ(ω)) log(ρ(Ψ(ω)) dµ(ω) = H(ν∥µ).

We can apply [Föl22, Proposition 1] to obtain that there exists a predictable process bν with bν ∈ L2,

ν-almost surely, such that Bν = B −
∫ ·
0
bνt dt is a Brownian motion under ν with

Eν [∥Bν −B∥2H] = 2H(ν∥µ) = 2H(ν∥µ).(3.2)

Moreover, from [Föl22, Theorem 3] it follows that λ∗ = Lawν(B
ν , B) is the unique optimal adapted

coupling between µ and ν. By Lemma 3.1, λ∗ = Lawν(Ψ(Bν),Ψ(B)) is an adapted coupling of µ = Ψ♯µ

and ν = Ψ♯ν. Thus, using the definition of CH from (2.18),

Tad
cH,2(µ, ν)

2 = Eν [∥Bν −B∥2H] = Eν [C
2
H(Ψ(Bν),Ψ(B))] ≥ Tad

CH,2(µ,ν)
2.(3.3)

On the other hand, since cH ◦ (π1 × π1) ≤ CH, applying Lemma 3.1 gives

Tad
cH,2(µ, ν)

2 = inf
λ∈Πad(µ,ν)

∫
Ω×Ω

c2H(ω, ω) dλ(ω, ω) = inf
λ∈Πad(µ,ν)

∫
ΩG×ΩG

c2H(π1ω, π1ω) dλ(ω,ω)

≤ inf
λ∈Πad(µ,ν)

∫
ΩG×ΩG

C2
H(ω,ω) dλ(ω,ω)

= Tad
CH,2(µ,ν)

2.

Hence we have optimality of λ∗ and

Tad
CH,2(ν,µ)

2 = Eν [CH2(Ψ(Bν),Ψ(B))] = Eν [∥Bν −B∥2H] = Tad
cH,2(µ, ν)

2.

Applying (3.2) gives (3.1), and uniqueness of the optimiser follows by Lemma 3.1. □

Remark 3.4. Suppose that h is an adapted process with h ∈ H almost surely, and let ν = Law(ThB).

Then we can take bν = ḣ in Theorem 3.3. Indeed, by Girsanov’s theorem, B − h is a Brownian motion

under ν, and H(ν∥µ) = H(ν∥µ) = Eν [log dν/dµ] = Eν [∥h∥2H].
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4. Talagrand for Gaussian rough paths – Direct approach via contraction

We now give an alternative proof of Talagrand’s T2 inequality in a more general setting, following the

contraction approach of [Rie17].

Let Z be a d-dimensional continuous Gaussian process that admits a level 2 “rough path” lift Z = Z(ω)

with Z ∈ D almost surely, where D is a suitable p-variation (or β-Hölder) rough path space (cf. [FV10,

Chapter 15]). We refer to [FV10, Chapter 15] for conditions under which a Gaussian process can be lifted

to a Gaussian rough path. Here we simply assume that such a lift exists. Let ν ∈ P(Ω) denote the law

of the Gaussian process Z, ν ∈ P(D) the law of Z, and Hν the Cameron–Martin space of Z (cf. [Jan97,

Chapter 8, Section 4]).

A T2 inequality is known to hold for general Gaussian processes with α = 1 and cost

c̃Hν (x, y) =

∥h∥Hν
, if x− y ∈ Hν ,

+∞, otherwise;

that is ν ∈ T2(Ω, c̃Hν
, 1); see [FÜ04, Theorem 3.1] and [Rie17, Theorem 1.2].

We work under the following assumption.

Assumption 4.1. Suppose that there exists Ω̃ ⊆ Ω with ν(Ω̃) = 1 such that

(i) There exists a Borel-measurable lift map Ψ̃: Ω → D with π1Ψ̃(x) = x, for x ∈ Ω̃, where π1 is the

projection onto the first component, such that Ψ̃(Z) = Z almost surely;

(ii) There exists a continuous shift map

Hν ×D → D, (h,x) 7→ T̃hx,

such that

T̃hΨ̃(x) = Ψ̃(x+ h), x ∈ Ω̃, h ∈ Hν .(4.1)

Remark 4.2. By standard results [FV10, Chapter 15], we see that Assumption 4.1 is satisfied for

Z = B a fractional Brownian motion and its lift B in the step-2 Carnot group G, with path space

D = Cp−var
0 ([0, 1],G), for H ∈ (1/3, 1/2], p ∈ (1/H, 3). Extensions to H > 1/4 are possible, at the price

of lifting Z to a step-3 Carnot group; we do not give details for the sake of brevity.

Definition 4.3. Define the cost C̃Hν
: D ×D → [0,∞], similarly to (2.18), by

(4.2) C̃Hν (X,Y ) :=

∥h∥Hν
, if Y = T̃hX, for some h ∈ Hν ,

+∞, otherwise,

where T̃h is the shift from Assumption 4.1.

Due to the assumed continuity of the shift, we recover measurability of C̃Hν (cf. Lemma 2.20). By

applying the contraction principle from Lemma 2.2, similarly to [Rie17], but for a different cost, we lift

the Talagrand inequality to the rough path space D.

Theorem 4.4. Let Assumption 4.1 hold. Then ν ∈ T2(D, C̃Hν
, 1).
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Proof. The property (4.1) implies that for h ∈ Hν , a path x ∈ Ω̃ satisfies x = y + h if and only if

Ψ̃(x) = T̃hΨ̃(y). Hence for x− y ∈ Hν , we have that Ψ̃(y + (x− y)) = T̃x−yΨ̃(y) and thus

∥x− y∥2Hν
= C̃2

Hν
(Ψ̃(x), Ψ̃(y)).

Similarly, if x− y /∈ Hν , then Ψ̃(x) is not a shift of Ψ̃(y) and so C̃Hν
(Ψ̃(x), Ψ̃(y)) = +∞. Together with

ν ∈ T2(Ω, c̃Hν
, 1), ν(Ω̃) = 1, and measurability of C̃Hν

and Ψ̃, an application of the contraction principle

(Lemma 2.2) with L = 1 then yields ν ∈ T2(D, C̃Hν
, 1). □

5. Talagrand for the heat kernel measure on Carnot groups

In this section, we show that a T2 inequality on the step-2 Carnot group G follows from a log-Sobolev

inequality, which in turn can be deduced from a heat semigroup estimate. In particular, we prove a T2
inequality for the heat kernel measure µ1 in the case that G is an H-type group. We will apply this result

in Section 6 to show that a T2 inequality also holds on the path space by a bottom-up approach.

5.1. From log-Sobolev to Talagrand. We follow the approach put forward by Otto–Villani [OV00],

namely deducing a T2 inequality as a consequence of a log-Sobolev inequality. We will make use of

the generalisation by Gigli–Ledoux [GL13] of Otto–Villani’s result. Whereas the result of Gigli–Ledoux

[GL13] depends on the log-Sobolev inequality for Lipschitz test functions, we show via a mollification

argument that this can be relaxed to only requiring the log-Sobolev inequality for smooth test functions;

see Theorem 5.1. Moreover, for the heat kernel measure, we show that the log-Sobolev inequality for

smooth test functions follows from certain heat semigroup estimates; see Theorem 5.2. In the special case

of H-type groups, as defined in Remark 2.10, the required heat semigroup estimates are known. Thus, in

Theorem 5.3, we show that a T2 inequality holds for the heat kernel measure on H-type groups and, in

particular, on the Heisenberg group.

Let G be a step-2 Carnot group. Recall that, for the Carnot–Carathéodory metric dCC defined in

(2.9), the space (G, dCC) is a Polish space. Hence, for any Borel probability measure η on G, the space

(G, dCC,η) is a metric measure space in the sense of [GL13].

For a locally Lipschitz function f : G → R, define the local Lipschitz constant LipG(f) by

LipG(f)(x) := lim sup
y→x

|f(y)− f(x)|
dCC(x,y)

, x ∈ G.

By an extension of Rademacher’s theorem due to Pansu [Pan89] (see also [DPMM+25, PS17], and [LD25,

Theorem 11.3.2]), we obtain that every Lipschitz continuous function f : U ⊆ G → R is Pansu differen-

tiable Lebesgue-almost everywhere. In particular, its gradient ∇Gf exists Lm-almost everywhere and

LipG(f)(x) = |∇Gf(x)|G, for Lm-almost every x ∈ G.

We say that a Borel probability measure η on G with η ≪ Lm satisfies the log-Sobolev inequality if

there exists α ∈ (0,∞) such that

(LSI) 2α

∫
G
f log f dη ≤

∫
{f>0}

|∇Gf |2G
f

dη, for all f ∈ C∞
c (G, [0,∞)),

∫
G
f dη = 1.

We first show that (LSI) implies a T2 inequality. As an intermediate step, we show that the log-Sobolev

inequality also holds for Lipschitz functions, so that we can then apply [GL13, Theorem 5.2].
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Theorem 5.1. Suppose that η is a Borel probability measure on G with η ≪ Lm satisfying (LSI) for

some α ∈ (0,∞). Then, for any Lipschitz function f : G → [0,∞) with
∫

G f dη = 1,

(5.1) 2α

∫
G
f log f dη ≤

∫
{f>0}

|∇Gf |2G
f

dη.

Moreover, η ∈ T2(G, dCC, α).

Proof. We argue as in the proof of [AS20, Theorem 4.8] via mollification. Consider f : G → [0,∞)

Lipschitz continuous with
∫

G f dη = 1. In particular, its gradient ∇Gf exists Lm-almost everywhere.

Let ρ : G → R be a symmetric smooth mollifier in G, i.e. a function ρ ∈ C∞
c (Rm, [0,∞)) such that

suppρ ⊂ B1, 0 ≤ ρ ≤ 1, ρ(x−1) = ρ(x), for all x ∈ G, and
∫

G ρ dx = 1. For k ∈ N and x ∈ G, set

ρk(x) = kQρ(δkx) and define the mollification f̂k = ρk ⋆ f by

f̂k(x) := (ρk ⋆ f)(x) =

∫
G
ρk(xy

−1)f(y) dy =

∫
G
ρk(y)f(y

−1x) dy, x ∈ G.

For each k ∈ N, also define a smooth truncation function χk ∈ C∞
c (Rm, [0, 1]) such that χk = 1 in Bk,

χk = 0 in Bc
2k, and |∇Gχk|G ≤ C/k for some constant C ∈ (0,∞), and define fk := f̂k χk.

Thus, fk ∈ C∞
c (G, [0,∞)), for each k ∈ N. Moreover, fk → f in L1(η) and thus η-almost everywhere

along a subsequence. By Fatou’s lemma, we have that

lim inf
k→∞

∫
G
fk log fk dη ≥

∫
G
f log f dη.

We next show an upper estimate for the lim sup of the right-hand side in (5.1) with f̂k in place of f .

Note that, by left-invariance of the Carnot–Caratheodory distance, for x1,x2 ∈ G, we have

|f̂k(x1)− f̂k(x2)|
dCC(x1,x2)

≤
∫

G
ρk(y)

|f(y−1x1)− f(y−1x1)|
dCC(x1,x2)

dy ≤
∫

G
ρk(y)

|f(y−1x1)− f(y−1x1)|
dCC(y−1x1,y−1x2)

dy.

Thus, after passing to the lim sup for x1 → x2 = x, we obtain LipGf̂k(x) ≤ ρk ⋆LipGf(x), or equivalently

|∇Gf̂k|G(x) ≤ ρk ⋆ |∇Gf |G(x). With this estimate, the Cauchy–Schwarz inequality gives

|∇Gf̂k|2G ≤
[
ρk ⋆

(
χ{f>0}

√
f
|∇Gf |G√

f

)]2
≤ fk

(
ρk ⋆

|∇Gf |2G
f

χ{f>0}

)
.

Multiplying fk by the truncation χk and applying the product rule, we estimate

lim sup
k→∞

∫
{fk>0}

|∇Gfk|2G
fk

dη ≤ lim sup
k→∞

∫
{f̂k>0}

|∇Gf̂k|2G
f̂k

dη

≤ lim sup
k→∞

∫
G
ρk ⋆

(
|∇Gf |2G
f

χ{f>0}

)
dη ≤

∫
{f>0}

|∇Gf |2G
f

dη.

Finally, define Ik :=
∫

G fk dη and the normalised function f̃k := fk/Ik, for each k ∈ N. Then, by (LSI),

2α

∫
G
fk log fk dη = 2αIk

∫
G
f̃k log f̃k dη + 2αIk log Ik

≤ Ik

∫
{f̃k>0}

|∇Gf̃k|2G
f̃k

dη + 2αIk log Ik =

∫
{fk>0}

|∇Gfk|2G
fk

dη + 2αIk log Ik.
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We conclude that

2α

∫
G
f log f dη ≤ lim inf

k→∞
2α

∫
G
fk log fk dη ≤ lim sup

k→∞

∫
{fk>0}

|∇Gfk|2G
fk

dη ≤
∫
{f>0}

|∇Gf |2G
f

dη.

Thus, the log-Sobolev inequality for Lipschitz-continuous functions is established.

Finally, since (G, dCC,η) is a metric measure space in the sense of [GL13], we conclude that η ∈
T2(G, dCC, α) by [GL13, Theorem 5.2]. □

5.2. From heat semigroup estimates to Talagrand. We now specialise to the case of the heat kernel

measure µ1 and give a sufficient condition for µ1 ∈ T2(G, dCC, α), for some α ∈ (0,∞).

As noted in [Eld10, Section 5] and [BBBC08, Remark 6.6], one can deduce the log-Sobolev inequality

(LSI) for µ1 from the following heat semigroup estimate: there exists a constant K ∈ (0,∞) such that

|∇GPtf |G ≤ KPt(|∇Gf |G), for all f ∈ C∞
c (G,R), t ≥ 0,(5.2)

where Pt is the heat semigroup defined in (2.14). Indeed, for the Heisenberg group G = H = H1, [Li06,

Théorème 1.1] proves the estimate (5.2), and [Li06, Corollaire 1.2] states that (LSI) holds as a direct

consequence, following the arguments in [ABC+00, Théorème 5.4.7]. More generally, for G = Hn, [HZ10,

Theorem 7.3] and [BBBC08, Theorem 6.1] prove that (LSI) holds, again relying on the heat semigroup

estimate (5.2). For completeness, we provide a proof in Theorem 5.2 that, for any step-2 Carnot group,

the heat semigroup estimate (5.2) implies the log-Sobolev inequality (LSI). Thanks to Theorem 5.1, the

T2 inequality also follows.

Theorem 5.2. Let G be a step-2 Carnot group and suppose that there exists K ∈ (0,∞) such that

the heat semigroup P on G satisfies the estimate (5.2) for all t ∈ [0, 1]. Let α = 1
2K2 . Then the heat

kernel measure µ1 on G satisfies the log-Sobolev inequality (LSI) with constant α, and µ1 satisfies the T2
inequality µ1 ∈ T2(G, dCC, α).

Proof. Suppose that Pt satisfies (5.2) for all t ∈ [0, 1]. Let ϕ ∈ C2(I,R) for some interval I ⊂ R, and

suppose moreover that ϕ′′ > 0 and the function −1/ϕ′′ is convex. Let f ∈ C∞
c (G,R) and let t ∈ [0, 1].

Then, by the heat equation and chain rule for the sub-Laplacian, for any s ∈ [0, t],

∂sPsϕ(Pt−sf) = Ps

(
∆Gϕ(Pt−sf)− ϕ′(Pt−sf)∆GPt−sf

)
= Ps

(
ϕ′′(Pt−sf)|∇GPt−sf |2G

)
.

The heat semigroup estimate (5.2) and the Cauchy–Schwarz inequality imply that

|∇GPt−sf |2G ≤ K2
(
Pt−s(|∇Gf |G)

)2
= K2

(
Pt−s

(
|∇Gf |G

√
ϕ′′(f) · 1/

√
ϕ′′(f)

))2
≤ K2Pt−s(|∇Gf |2Gϕ′′(f))Pt−s(1/ϕ

′′(f)),

and, by Jensen’s inequality,

ϕ′′(Pt−sf) ≤
−1

Pt−s(−1/ϕ′′(f))
=

1

Pt−s(1/ϕ′′(f))
.

Hence

∂sPsϕ(Pt−sf) = Ps

(
ϕ′′(Pt−sf)|∇GPt−sf |2G

)
≤ K2PsPt−s(|∇Gf |2Gϕ′′(f)) = K2Pt(|∇Gf |2Gϕ′′(f)),
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and integrating gives

Ptϕ(f)− ϕ(Ptf) =

∫ t

0

∂sPsϕ(Pt−sf) ds ≤ K2tPt(|∇Gf |2Gϕ′′(f)).

Now take ϕ : (0,∞) → R to be ϕ(x) = x log x for all x ∈ (0,∞), and suppose that f : G → (0,∞).

Then we have the following form of the log-Sobolev inequality:

Pt(f log f)− Ptf log(Ptf) ≤ K2tPt
|∇Gf |2G
f

.

To arrive at (LSI), we set t = 1, evaluate both sides of the inequality at the identity, and additionally

suppose that
∫

G f dµ1 = 1. Then ∫
G
f log f dµ1 ≤ K2

∫
G

|∇Gf |2G
f

dµ1.

Note that, allowing f : G → [0,∞), we have
∫

G f log f dµ1 =
∫
{f>0} f log f dµ1. Thus (LSI) holds with

constant α = 1
2K2 .

Applying Theorem 5.1, we further have that µ1 ∈ T2(G, dCC, α). □

5.3. Talagrand on Heisenberg-type groups. For any H-type group G, [Eld10, Theorem 2.4] proves

that the heat semigroup estimate (5.2) is satisfied. We thus have the following corollary of Theorem 5.2.

Theorem 5.3. Let G be an H-type group. Then there exists α > 0 such that the heat kernel measure

µ1 on G satisfies the log-Sobolev inequality (LSI) with constant α, and µ1 satisfies the T2 inequality

µ1 ∈ T2(H, dCC, α).

Proof. By [Eld10, Theorem 2.4], the estimate (5.2) holds on G with some constant K. Thus the result

follows from Theorem 5.2 with α = 1
2K2 . □

We remark that the best possible constant in Theorem 5.3 is α ≤ 1/2, since [Eld10, Proposition 4.1]

shows that the optimal constant in (5.2) satisfies K ≥
√

3d1+5
3d1+1 .

6. Talagrand for Brownian motion on Carnot groups – Bottom-up approach

In Section 5, we discussed the availability of Talagrand transportation inequalities on Carnot groups,

as a consequence of log-Sobolev inequalities and heat kernel estimates. In this section, we demonstrate

that we can transfer the T2 inequality for the heat kernel measure on a Carnot group, via a rescaling and

tensorisation argument, to a T2 inequality on the associated path space; see Section 6.1. We highlight

that this approach yields interesting insights into optimal transport problems in the non-commutative

sub-Riemannian setting that distinguishes it from the Euclidean case; see Sections 6.2 and 6.3. Finally, we

show that the cost function defined in (2.18) on the path space arises naturally as the Γ-limit of discretised

cost functions based on the Carnot–Caratheodory distance on the Carnot group; see Section 6.4.

Throughout this section, let G ∼= Rd1 ⊕ Rd2 be a step-2 Carnot group and set d = d1; see Section 2.2.

Recall that B denotes Brownian motion on G, with law µ = Law(B) and time marginals µt = Law(Bt)

for t ∈ [0, 1].

6.1. From Talagrand on Carnot groups to Talagrand on path space. The main result of this

section is that the T2 inequality for µ1 on the group G implies the T2 inequality for µ on the space ΩG

of continuous G-valued paths started from the origin.
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We first show that the heat kernel measure satisfies the following scaling property.

Lemma 6.1. Suppose that µ1 ∈ T2(G, dCC, α), for some α ∈ (0,∞). Then, for any t ∈ (0, 1], µt ∈
T2(G, dCC, αt

−1).

Proof. We claim that the heat kernel measure on G satisfies the scaling

(6.1) µt = (δs−1)♯µs2t,

for any s > 0, t ∈ [0, 1]. To see this, recall that p : (0,∞) × G → (0,∞) denotes the heat kernel

on G, Q the homogeneous dimension of G, and Lm the Lebesgue measure on G. Then, as in (2.8),

(δs)♯Lm(dx) = s−QLm(dx), for any s > 0. Moreover, by [AS20, Theorem 2.3], for any s > 0, t ∈ [0, 1],

and x ∈ G, we have that ps2t(δsx) = s−Qpt(x). Therefore, for any Borel set A ⊆ G,

µt(A) =

∫
A

pt(x)Lm(dx) = sQ
∫
A

(ps2t ◦ δs)(x)Lm(dx)

= sQ
∫
δs−1 (A)

ps2t(x)(δs)♯Lm(dx) =

∫
δs−1 (A)

ps2t(x)Lm(dx) = (δs−1)♯µs2t(A).

This proves the claim. Now fix t ∈ (0, 1]. Setting s = t−
1
2 in (6.1), we have µt = (δ√t)♯µ1. The map

δ√t : G → G is L-Lipschitz with Lipschitz constant L =
√
t. Thus, since µ1 ∈ T2(G, dCC, α), Lemma 2.2

implies that µt ∈ T2(G, dCC, αt
−1). □

We now consider the product space G2n = G × · · · × G, for some n ∈ N, and apply the dimension-free

tensorisation property of the T2 inequality. Define dCC,n : G2n × G2n → [0,∞) by

d2CC,n(x,x) := 2n
2n∑
i=1

d2CC(xi,xi),

for x = (x1, . . . ,xn), x = (x1, . . . ,xn) ∈ G2n . We have the following tensorisation result.

Proposition 6.2. Suppose that µ1 ∈ T2(G, dCC, α), for some α ∈ (0,∞). Then, for any n ∈ N,

µ⊗2n

2−n ∈ T2(G2n , dCC,n, α).

Proof. Fix n ∈ N. First note that µ2−n ∈ T2(G, dCC, α2
n), by Lemma 6.1. Define d̃CC,n : G2n → [0,∞)

by

d̃2CC,n(x,x) =

2n∑
i=1

d2CC(xi,xi),

for x = (x1, . . . ,xn), x = (x1, . . . ,xn) ∈ G2n . Since (G, dCC) is a Polish space, [GL07, Theorem 6] im-

plies that T2(G, dCC, α2
n) has the dimension-free tensorisation property; i.e. µ⊗2n

2−n ∈ T2(G2n , d̃CC,n, α2
n).

Applying Lemma 2.2 with ψ equal to the identity, we conclude that µ⊗2n

2−n ∈ T2(G2n , dCC,n, α). □

We next prove a relative entropy bound for measures on the path space. For n ∈ N, set tnk = k2−n

for k ∈ {0, . . . , 2n}, and define Γn : ΩG → G2n to be the projection of paths to their dyadic increments;

i.e. Γnω = (ω0,tn1
,ωtn1 ,t

n
2
, . . . ,ωtn

2n−1
,1), for ω ∈ ΩG. Then define a cost function Cn : ΩG ×ΩG → [0,∞)

by

(6.2) Cn(ω,ω) := dCC,n(Γ
nω,Γnω), ω,ω ∈ ΩG.
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Lemma 6.3. Suppose that µ1 ∈ T2(G, dCC, α), for some α ∈ (0,∞), and let ν be a Borel probability

measure on ΩG. Define µn = Γn
♯ µ, ν

n = Γn
♯ ν ∈ P(G2n). Then H(νn∥µn) ↗ H(ν∥µ) as n → ∞ and,

for any n ∈ N,

TCn,2(µ,ν) ≤
√

2

α
H(ν∥µ);

i.e. µ ∈ T2(ΩG, Cn, α).

Proof. By independence and stationarity of the increments of B, we have that µn = Γn
♯ µ = µ⊗2n

2−n and

thus, by Proposition 6.2, µn ∈ T2(G2n , dCC,n, α).

As shown in [DGW04, Lemma 2.1],

(6.3) H(νn∥µn) = inf
{
H(η∥µ) : η ∈ P(ΩG), Γ

n
♯ η = νn

}
,

and we see that the right-hand side is increasing in n and bounded above by H(ν∥µ). To see that the

limit is equal to H(ν∥µ), we introduce the piecewise linear interpolation map Rn : G2n → ΩG, which is

defined such that Γn ◦ Rn = id, and the image Im(Rn) ⊂ ΩG is the set of paths that are linear except

at the dyadics tnk , k ∈ {0, . . . , 2n}. Define µ̃n = Rn
♯ µ

n, ν̃n = Rn
♯ ν

n ∈ P(ΩG). Since Rn : G2n → Im(Rn)

is a bijection, applying the representation given in (6.3) for both Rn and its inverse gives the equality

H(νn∥µn) = H(ν̃n∥µ̃n). We conclude similarly to [AGS08, Corollary 9.4.6], as follows. For any ω ∈ ΩG,

we have that Rn ◦Γn(ω) → ω as n→ ∞ and so, by dominated convergence, µ̃n ⇀ µ and ν̃n ⇀ ν. Then,

using the joint lower semicontinuity of the relative entropy (see, e.g. [AGS08, Lemma 9.4.3]) together

with the upper bound implied by (6.3), we conclude that

lim
n→∞

H(νn∥µn) = lim
n→∞

H(ν̃n∥µ̃n) = H(ν∥µ).

Finally, for any n ∈ N, µn ∈ T2(G2n , dCC,n, α) implies that

T2
Cn,2(µ,ν) = T2

dCC,n,2(µ
n,νn) ≤ 2

α
H(νn∥µn) ≤ 2

α
H(ν∥µ). □

Before turning to the main result of this section, we prove an auxiliary lemma on the Euclidean cost

on Rd and the associated Cameron–Martin cost cH defined in (2.1). For n ∈ N, define cn : Ω×Ω → [0,∞)

by

(6.4) c2n(ω, ω) = 2n
2n∑
k=1

|ωtnk−1,t
n
k
− ωtnk−1,t

n
k
|2,

for ω, ω ∈ Ω. Part (ii) of the following lemma is a standard stability result from optimal transport and

is a consequence, for example, of [Rie17, Lemma 1.1]. Part (iii) will also be used in Proposition 6.21.

Lemma 6.4.

(i) For each (ω, ω) ∈ Ω× Ω, (cn(ω, ω))n∈N is an increasing sequence, and

(6.5) lim
n→∞

cn(ω, ω) = cH(ω, ω).

(ii) For any ν ∈ P(Ω), the following convergence holds along a subsequence:

(6.6) lim
n→∞

Tcn,2(µ, ν) = TcH,2(µ, ν).
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(iii) For any (ω,ω) ∈ ΩG ×ΩG and n ∈ N,

(6.7) Cn(ω,ω) ≥ cn(π1ω, π1ω).

Remark 6.5. We will show in Theorem 6.6, that the convergence in (6.6) and the lower bound in

(6.7) imply the lower estimate lim infn→∞ TCn,2(µ,ν) ≥ TCH,2(µ,ν). An even stronger result will be

derived in Section 6.4, namely, we prove the Γ-convergence of the cost functions Cn to the cost CH. This

establishes that CH is indeed the natural limiting cost. Moreover, we prove that the Γ-convergence of

Cn implies the convergence of the associated transport problems TCn,2(µ, ν̃
n) along a suitable sequence

of probability measures ν̃n ∈ P(ΩG).

Proof. Let ω, ω ∈ Ω and write h = ω−ω. The sequence (cn(ω, ω))n∈N is increasing by definition. Suppose

that h ∈ H. Then

lim
n→∞

c2n(ω, ω) = lim
n→∞

2n
2n∑
k=1

|htnk−1,t
n
k
|2 =

∫ 1

0

|ḣt|2 dt = ∥h∥2H.

For h /∈ H, the above limit is +∞. This proves part (i).

For part (ii), note that TcH,2(µ, ν) and Tcn,2(µ, ν) admit minimisers, for each n ∈ N, by e.g. [Vil09,

Theorem 4.1], since the cost functions are lower semicontinuous and non-negative. Let λ∗ ∈ Π(µ, ν)

attain the infimum in TcH,2(µ, ν). Then, by the monotone convergence theorem,

lim sup
n→∞

T2
cn,2(µ, ν) ≤ lim sup

n→∞

∫
Ω×Ω

c2n(ω, ω) dλ
∗(ω, ω) =

∫
Ω×Ω

c2H(ω, ω) dλ∗(ω, ω) = T2
cH,2(µ, ν).

On the other hand, for each n ∈ N, let λn ∈ Π(µ, ν) attain the infimum in Tcn,2(µ, ν). Since Π(µ, ν) is

tight, Prohorov’s theorem implies that (λn)n∈N converges weakly along a subsequence (nk)k∈N to some

λ̃ ∈ Π(µ, ν). By monotonicity, for any m ∈ N,

lim inf
k→∞

T2
cnk

,2(µ, ν) = lim inf
k→∞

∫
Ω×Ω

c2nk
(ω, ω) dλnk(ω, ω) ≥ lim inf

k→∞

∫
Ω×Ω

c2m(ω, ω) dλnk(ω, ω)

=

∫
Ω×Ω

c2m(ω, ω) dλ̃(ω, ω).

Applying monotone convergence once more,

lim inf
k→∞

T2
cnk

,2(µ, ν) ≥ lim
m→∞

∫
Ω×Ω

c2m(ω, ω) dλ̃(ω, ω) =

∫
Ω×Ω

c2H(ω, ω) dλ̃(ω, ω)

≥ T2
cH,2(µ, ν).

Now observe that, for x,x ∈ G, dCC(x,x) ≥ |π1x − π1x|. Indeed, by definition of the Carnot–

Carathéodory metric,

dCC(x,x) = min
{ ∫ 1

0

|γ̇t|dt : γ : [0, 1] → G horizontal, γ0 = x, γ1 = x
}

≥ inf
{ ∫ 1

0

|γ̇t|dt : γ : [0, 1] → G horizontal, π1γ0 = π1x, π1γ1 = π1x
}

= min
{ ∫ 1

0

|ġt|dt : g : [0, 1] → Rd absolutely continuous, g0 = π1x, g1 = π1x
}

= |π1x− π1x|.
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Hence, for ω,ω ∈ ΩG,

C2
n(ω,ω) = 2n

2n∑
k=1

d2CC(ωtnk−1,t
n
k
,ωtnk−1,t

n
k
) ≥ 2n

2n∑
k=1

|π1ωtnk−1,t
n
k
− π1ωtnk−1,t

n
k
|2 = c2n(π1ω, π1ω).

This concludes part (iii). □

We are now in position to prove the main result of this section.

Theorem 6.6. Let G be a step-2 Carnot group and suppose that µ1 ∈ T2(G, dCC, α), for some α ∈ (0,∞).

Then µ ∈ T2(ΩG, CH, α).

Proof. If ν is not absolutely continuous with respect to µ, then H(ν∥µ) = +∞ and the cost-information

inequality holds trivially.

Now suppose that ν ≪ µ. Recall the lift map Ψ: C([0, 1],Rd) → C([0, 1],G) given by (2.15). By

Proposition 2.13, µ = Ψ♯µ, and by Lemma 2.14, there exists ν ≪ µ such that ν = Ψ♯ν. Now let

λ∗ ∈ Π(µ, ν) be such that

T2
cH,2(µ, ν) =

∫
Ω×Ω

c2H(ω, ω) dλ∗(ω, ω) =

∫
Ω×Ω

∥ω − ω∥2H dλ∗(ω, ω).

We have that λ∗({ (ω, ω) ∈ Ω×Ω : ω−ω ∈ H}) = 1 and that λ̃ = (Ψ×Ψ)♯λ
∗ ∈ Π(µ,ν) is an admissible

coupling. Using the property (2.17) of the lift and shift from Proposition 2.16, we find that∫
ΩG×ΩG

C2
H(ω,ω) dλ̃(ω,ω) =

∫
Ω×Ω

C2
H(Ψ(ω),Ψ(ω)) dλ∗(ω, ω)

=

∫
Ω×Ω

C2
H(Ψ(ω), Tω−ωΨ(ω)) dλ∗(ω, ω)

=

∫
Ω×Ω

∥ω − ω∥2H dλ∗(ω, ω) = T2
cH,2(µ, ν).

Hence T2
CH,2(µ,ν) ≤ T2

cH,2(µ, ν).

Combining (6.6) and (6.7) from Lemma 6.4, we have

lim sup
n→∞

T2
Cn,2(µ,ν) ≥ lim sup

n→∞
T2

cn,2(µ, ν) ≥ T2
cH,2(µ, ν) ≥ T2

CH,2(µ,ν).

By Lemma 6.3, we conclude that T2
CH,2(µ,ν) ≤ 2

αH(ν∥µ). □

Theorem 6.7. Let G be an H-type group. Then the measure µ on the space ΩG = C0([0, 1],G) satisfies

the cost-information inequality

µ ∈ T2(ΩG, CH, α),

for α > 0 as in Theorem 5.3.

Proof. By Theorem 5.3, µ1 ∈ T2(G, dCC, α). We conclude by Theorem 6.6. □

6.2. Failure of top-down projection and blow-up of cost functions. In this section, we point

out two major differences between the classical Euclidean and the Carnot group settings. In contrast to

the Euclidean case, we cannot project the Talagrand inequality from Theorem 6.6 down to a Talagrand

inequality for B1. Moreover, the cost functions Cn do not converge pointwise to the cost CH.
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We start by giving the corresponding projection result in the Euclidean setting, which we prove via

the contraction principle from Lemma 2.2. Let P̃1 : Ω → Rd1 , ω 7→ ω1 denote the map that evaluates a

path at time t = 1, and recall the Euclidean Cameron–Martin cost cH defined in (2.1).

Proposition 6.8. Let η be a Borel probability measure on Ω and suppose that η ∈ T2(Ω, cH, α), for some

α ∈ (0,∞). Then (P̃1)♯η ∈ T2(Rd1 , |.− .|, α), where | · | denotes the Euclidean norm on Rd1 .

Proof. For any ω, ω ∈ Ω such that ω − ω ∈ H, Jensen’s inequality implies that

∥ω − ω∥2∞ = sup
t∈[0,1]

∣∣∣ ∫ t

0

(ω̇s − ω̇s) ds
∣∣∣2 ≤ sup

t∈[0,1]

t

∫ t

0

|ω̇s − ω̇s|2 ds ≤
∫ 1

0

|ω̇s − ω̇s|2 ds = ∥ω − ω∥2H

Thus, for any ω, ω ∈ Ω,

|P̃1ω − P̃1ω|2 ≤ ∥ω − ω∥2∞ ≤ c2H(ω, ω).

Hence the contraction principle from Lemma 2.2 yields the claim. □

Now consider the law µ of the Brownian motion B on G. Let P1 : ΩG → G denote the projection of

a G-valued path onto its final time evaluation; i.e. P1ω = ω1 for any ω ∈ G. Suppose that there exists

Ω̃G ⊆ ΩG with µ(Ω̃G) = 1 and some measurable function L : ΩG → [0,∞] such that

dCC(P1ω, P1ω̃) ≤ L(ω)CH(ω, ω̃),(6.8)

for all ω, ω̃ ∈ Ω̃G. If L ∈ L∞(µ), then, by Lemma 2.2, the T2 inequality for µ implies a T2 inequality

for µ1. If we only have L ∈ Lq(µ) for some q ∈ [2,∞), then Lemma 2.2 still implies a Tp inequality for

p = 2q
2+q ∈ [1, 2). The following result shows that any such L cannot belong to Lq for any q ∈ [2,∞], and

thus the contraction principle from Lemma 2.2 is not applicable.

Proposition 6.9. Let L : ΩG → [0,∞] be as in (6.8). Then µ(L = ∞) > 0. In particular, L /∈ Lq(µ)

for any q ∈ (0,∞].

We make use of the following example in the proof of Proposition 6.9 and again below in the proof of

Proposition 6.11.

Lemma 6.10. Let a > 0 and define h ∈ H by ht = (at, 0, . . . , 0) ∈ Rd1 , for all t ∈ [0, 1]. Then, for any

s, t ∈ [0, 1] with s ≤ t, there exists a standard normal random variable Zs,t such that

d2CC(Bs,t, (ThB)s,t) ≥ aC(t− s)
3
2 |Zs,t|,

for some constant C > 0 independent of a, s and t. Moreover, for u, v, s, t ∈ [0, 1] with u ≤ v ≤ s ≤ t,

the random variables Zu,v and Zs,t are independent.

Proof. For B = (B(1),B(2)), write B(1) = (B1, . . . , Bd1). Let s, t ∈ [0, 1] with s ≤ t. Since h is only

non-zero in its first component, Remark 2.18 implies that

B−1
s,t (ThB)s,t =

(
hs,t, a

d1∑
j=2

w1,j

∫ t

s

(s− r) dBj
r

)
.
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Choose k ∈ {1, . . . ,m} such that s2k :=
∑d1

j=2 |wk
1,j |2 > 0. By the left-invariance of dCC and the estimate

(2.11), there exists a constant κ > 0 such that

d2CC(Bs,t, (ThB)s,t) ≥ aκ−1

∣∣∣∣ d1∑
j=2

w1,j

∫ t

s

(s− r) dBj
r

∣∣∣∣ ≥ aκ−1

∣∣∣∣ d1∑
j=2

wk
1,j

∫ t

s

(s− r) dBj
r

∣∣∣∣.
By Itô’s isometry, we can define a standard normal random variable

Zs,t := s−1
k (t− s)−

3
2

√
3

d1∑
j=2

wk
1,j

∫ t

s

(s− r) dBj
r .

Thus, setting C = 3−
1
2κ−1sk, we have

d2CC(Bs,t, (ThB)s,t) ≥ aC(t− s)
3
2 |Zs,t|.

The independence property follows from the independence of Brownian increments. □

Proof of Proposition 6.9. Suppose for contradiction that µ(L < ∞) = 1. Let B be a Brownian motion

on G, let δ > 0, and define h ∈ H by ht = (δt, 0 . . . , 0) ∈ Rd1 , for all t ∈ [0, 1]. By Lemma 6.10, there

exists a constant C > 0 independent of δ and a standard normal random variable Z such that we have

the lower bound

d2CC(P1B, P1(ThB)) ≥ δC|Z|.

On the other hand, by definition of the cost CH,

C2
H(B, ThB) = ∥h∥2H = δ2.

Therefore, (6.8) implies that

Cδ|Z| ≤ L(B)δ2.

Since both |Z| and L(B) are almost surely finite, taking the limit as δ → 0 gives a contradiction. □

We now show that, contrary to the Euclidean case, the cost functions Cn defined in (6.2) may not

converge pointwise to CH. Again, we use the example from Lemma 6.10.

Proposition 6.11. Let B be a Brownian motion on G, and define h ∈ H by ht = (t, 0, . . . , 0) ∈ Rd1 , for

all t ∈ [0, 1]. Then

lim
n→∞

Cn(B, ThB) = ∞

almost surely.

Proof. Fix n ∈ N. By Lemma 6.10, there exist independent standard normal random variables Zn,k,

k ∈ {1, . . . , 2n}, such that

C2
n(B, ThB) = 2n

2n∑
k=1

d2CC(Btnk−1,t
n
k
, (ThB)tnk−1,t

n
k
) ≥ C2−n/2

2n∑
k=1

|Zn,k|.
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Note that (|Zn,k|)k=1,...,2n are independent half-normal random variables with mean
√

2/π and variance

1− 2/π. Thus, by Chebyshev’s inequality, for any δ > 0,

P

(∣∣∣∣ 2n∑
k=1

|Zn,k| −
√
2/π

2n

∣∣∣∣ > δ

)
≤ δ−2(1− 2/π)2−n.

The right-hand side is summable in n and so, by the first Borel–Cantelli lemma,

lim
n→∞

2−n
2n∑
k=1

|Zn,k| =
√
2/π almost surely.

Hence, we have

lim inf
n→∞

C2
n(B, ThB) ≥ C lim inf

n→∞
2n/2 · 2−n

2n∑
k=1

|Zn,k| = C
√
2/π lim

n→∞
2n/2 = +∞,

almost surely. □

When the marginals are related by a deterministic shift, we can identify the optimal coupling for the

cost CH, and we have the following equality.

Lemma 6.12. Let h ∈ H be deterministic and ν = Law(ThB). Then TCH,2(µ,ν) admits a unique

optimal coupling, this coupling is induced by a Monge map, and

T2
CH,2(µ,ν) = E[C2

H(B, ThB)] = 2H(ν∥µ) <∞.

Proof. The second equality follows from Theorem 3.3. Indeed, if ν = Law(ThB), then h = bν for the

Föllmer drift bν from Theorem 3.3. Since ν = Law(ThB) ≪ µ, we have that H(ν∥µ) < ∞. Now, from

the definition of CH, and the fact that h ∈ H is deterministic, we have optimality of λ∗ = Law(B, ThB).

To see this, let λ ∈ Π(µ,ν) and consider the event E := { (ω,ω) ∈ ΩG × ΩG : ω = Tπ1ω−π1ωω }. If

λ(E) < 1, then by definition of CH, we have
∫
C2

H(ω,ω) dλ(ω,ω) = +∞. Suppose now that λ(E) = 1.

Then, by Jensen’s inequality,∫
C2

H(ω,ω) dλ(ω,ω) =

∫
∥π1ω − π1ω∥2H dλ(ω,ω)

≥
∥∥∥∫ π1ω dν(ω)−

∫
π1ω dµ(ω)

∥∥∥2
H

= ∥h∥2H.

Equality holds if and only if λ({ (ω,ω) ∈ ΩG ×ΩG : π1ω−π1ω = h }) = 1. Combined with the condition

that λ(E) = 1, we see that any optimal coupling is concentrated on the graph of the function Th : ΩG →
ΩG. Thus, there is a unique optimal coupling of Monge form given by λ∗ = (id×Th)♯µ = Law(B, ThB),

and T2
CH,2(µ,ν) = E[C2

H(B, ThB)]. □

Remark 6.13. Let h ∈ H be as in Proposition 6.11. Since ν = Law(ThB) ≪ µ, we have that H(ν∥µ) <
∞. By Lemma 6.3, we thus observe that T2

Cn,2
(µ,ν) ≤ H(ν∥µ) <∞. However, Proposition 6.11 shows

that limn→∞ Cn(B, ThB) = +∞ almost surely. Thus Law(B, ThB) is suboptimal for some Cn, n ∈ N.

In the case of the Heisenberg group G = Hn, this suboptimality can already be seen for TdCC,2(µ1,ν1).

Indeed, [AR04, Theorem 5.1] shows that there is a unique optimal coupling and that this coupling is

concentrated on the graph of some function ϕ : Hn → Hn. Taking, for example, h as in Lemma 6.10, it is

clear that Law(B1, (ThB)1) is not concentrated on any such graph, since (ThB)1 is not measurable with

respect to σ(B1).
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6.3. Riemannian approximation of the Heisenberg group. In the case of classical Wiener space,

we consider paths taking values in Rd with the Euclidean geometry. In the present Carnot group setting,

we note the following two distinctions:

(i) (G, dCC) is a sub-Riemannian metric space (the sub-Laplacian is hypoelliptic);

(ii) the group operation on G is non-commutative.

It is shown in [CDPT07, Theorem 2.12] that any Carnot group can be approximated by Riemannian

manifolds in the sense of pointed Gromov–Hausdorff convergence; see also [AS20, Section 2.5] and, for the

Heisenberg group, [AR04, Section 6]. In making this approximation, we move out of the sub-Riemannian

setting but retain non-commutativity. We observe that, in this case, a T2 inequality on path space also

holds (Proposition 6.14) and that the blow-up of discretised cost functions shown in Proposition 6.11 does

not occur (see Proposition 6.17). The failure to recover the T2 inequality on the underlying space via

projection that was shown in Proposition 6.9 is still observed (Proposition 6.16). However, in contrast to

the sub-Riemannian case, we can use the contraction principle to obtain a Tp inequality on the underlying

space for any p ∈ [1, 2) (Proposition 6.15).

In order to ease the presentation of this section, we specialise to the Heisenberg group H = H1 ∼= R2⊕R.

Recall the left-invariant vector fields (V1, V2, V3) = (X,Y, Z), where

X = ∂x + 1
2y∂z, Y = ∂y − 1

2x∂z, Z = [X,Y ] = ∂z,

and the group operation

xx′ =
(
x+ x′, y + y′, z + z′ + 1

2 (xy
′−x′y)

)
, x = (x, y, z), x′ = (x′, y′, z′) ∈ H.

For ε > 0, define the manifoldMε to be R2⊕R equipped with the Euclidean topology and orthonormal

basis (X,Y, Zε), where Zε = εZ. Let dε denote the induced Riemannian distance, which is again left

invariant. By [CDPT07, Theorem 2.12], (H, dCC) is the limit of the Riemannian manifolds (Mε, dε) as

ε→ 0, in the sense of pointed Gromov–Hausdorff convergence. As in [AR04, Section 6], we see that, for

any x,y ∈Mε,

dε(x,y) = inf
{∫ 1

0

√
|γ̇1t |2 + |γ̇2t |2 + ε−2|γ̇3t − 1

2 (γ
1
t γ̇

2
t − γ̇1t γ

2
t )|2 dt : γ ∈ AC([0, 1],Mε), γ0 = x, γ1 = y

}
,

and, for ε0, ε1 > 0 with ε1 ≤ ε0,

dε0(x,y) ≤ dε1(x,y) ≤ dCC(x,y) = sup
ε>0

dε(x,y).

Moreover, by [Jui14, Lemma 1.1], there exists a constant c > 0 such that, for any ε > 0, x,y ∈Mε,

dCC(x,y) ≤ dε(x,y) + cε.(6.9)

We will also make use of the following bounds. There exists a constant κ > 0 such that, for any ε > 0

and x = (0, 0, z) ∈Mε,

(6.10) κ(|z| 12 − ε) ≤ dε(0,x) ≤ ε−1|z|,

where the lower bound follows from (2.11) combined with (6.9), and the upper bound from considering

the length of a purely vertical path.
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On the space (Mε, dε), we consider the same non-commutative group law as on H, but now the distance

dε is Riemannian.

Consider a Brownian motion B on R3 with law µ and Cameron–Martin space H = W 1,2
0 ([0, 1],R3).

We can define a Brownian motion Bε on (Mε, dε) by

dBε
t = X(Bε) dB1

t + Y (Bε) dB2
t + Zε dB

3
t ,

and let µε = Law(Bε). Explicitly, Bε = (Bε,(1),Bε,(2)) with

dB
ε,(1)
t = d(B1, B2)t, dB

ε,(2)
t =

1

2
(B2

t dB
1
t −B1

t dB
2
t ) + εdB3

t .

Let Ω := C0([0, 1],R3) and Ωε := C0([0, 1],Mε), and define a map Ψε : Ω → Ωε by

Ψε(ω) = (0, εω3)Ψ((ω1, ω2)), ω = (ω1, ω2, ω3) ∈ Ω,

where Ψ is the lift map defined in Definition 2.12. Define its domain as Dom(Ψε) := {ω = (ω1, ω2, ω3) ∈
Ω : (ω1, ω2) ∈ Dom(Ψ) }. For ω absolutely continuous, Ψε takes the explicit form

Ψε(ω)t =
(
(ω1

t , ω
2
t ),

1

2

∫ t

0

(ω1
r dω

2
r − ω2

r dω
1
r) + εω3

t

)
, t ∈ [0, 1].

Similarly to Proposition 2.13, we have that Bε = Ψε(B) almost surely. We can also define a shift map

T ε
h : Ω

ε → Ωε, for any h = (h1, h2, h3) ∈ H, by

T ε
hω = (0, εh3)T(h1,h2)ω, ω ∈ Ωε.

Then, similarly to Proposition 2.16, for any ω ∈ Dom(Ψε) and h ∈ H, we have

T ε
hΨ

ε(ω) = Ψε(ω + h).

Now define a cost function Cε
H : Ωε ×Ωε → [0,∞] by

Cε
H(ω, ω̃) =

∥h∥H, if ω̃ = T ε
hω, for some h ∈ H,

+∞, otherwise.

Taking the same approach as in Theorem 4.4, we see that µε satisfies a T2 inequality with this cost.

Proposition 6.14. We have the cost-information inequality µε ∈ T2(Ωε, Cε
H, 1).

Proof. As noted in Section 2.1, µ ∈ T2(Ω, cH, 1), where the cost cH is defined in (2.2). We also have that

µε = Ψε
♯µ and µ(Dom(Ψε)) = 1. Moreover, for any x, y ∈ Dom(Ψε) with h := y − x ∈ H,

Cε
H(Ψε(x),Ψε(y)) = Cε

H(Ψε(x),Ψε(x+ h)) = Cε
H(Ψε(x), T ε

hΨ
ε(x)) = ∥h∥2H = cH(x, y).

In case y−x /∈ H, then both sides are infinite. Thus, applying the contraction principle from Lemma 2.2,

we have that µε ∈ T2(Ωε, Cε
H, 1). □

In contrast to the sub-Riemannian setting, µε ∈ T2(Ωε, Cε
H, 1) implies a Tp inequality for µε

1 :=

Law(Bε
1), for p ∈ [1, 2), with a constant depending on ε.

Let P1 : Ω
ε →Mε denote the projection P1(ω) = ω1, for ω ∈ Ωε, so that µε

1 = (P1)♯µ
ε.

Proposition 6.15. Suppose that µε ∈ T2(Ωε, Cε
H, 1). Then, for any p ∈ [1, 2), there exists α(ε, p) > 0

such that limε→0 α(ε, p) = 0 and µε
1 ∈ Tp(Mε, dε, α(ε, p)).
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Proof. Suppose that ω, ω̃ ∈ Ωε with ω̃ = T ε
hω, for some h ∈ H. Define h = Ψε(h) and γ1 = ω−1

1 (T ε
hω)1.

Then

dε(P1(ω), P1(ω̃)) ≤ dε(h1,γ1) + dε(0,h1).

We bound dε(0,h1) by the length of the curve t 7→ ht in Ωε to get

dε(0,h1) ≤
∫ 1

0

√
|ḣ1r|2 + |ḣ2r|2 + ε−2|εḣ3r + 1

2 (h
1
rḣ

2
r − h2rḣ

1
r)− 1

2 (h
1
rḣ

2
r − h2rḣ

1
r)|2 dr

=

∫ 1

0

√
|ḣ1r|2 + |ḣ2r|2 + |ḣ3r|2 dr ≤ ∥h∥H.

(6.11)

Similarly to Remark 2.18, by integration by parts,

h−1
1 γ1 =

(
0,

∫ 1

0

(
h1r dω

2
r − h2r dω

1
r

))
,(6.12)

and so, by (6.10),

dε(h1,γ1) ≤ ε−1
∣∣∣ ∫ 1

0

(
h1r dω

2
r − h2r dω

1
r

)∣∣∣
≤ 2ε−1∥ω∥∞∥h∥H,

where ∥ω∥∞ := supt∈[0,1] |(ω1
t , ω

2
t )|. Hence

dε(P1(ω), P1(ω̃)) ≤ (1 + 2ε−1∥ω∥∞)∥h∥H = (1 + 2ε−1∥ω∥∞)Cε
H(ω, ω̃).

In the case that there does not exist h ∈ H such that ω̃ = Thω, then the same inequality holds trivially.

Next note that, for any q ∈ [1,∞), ω 7→ ∥ω∥∞ ∈ Lq(µ). Let p ∈ [1, 2) and set q = 2p
2−p ∈ [2,∞). By

the contraction principle from Lemma 2.2, we conclude that

µ1 ∈ Tp(Mε, dε, α(ε, p)), where α(ε, p) =
(
1 + 2ε−1E[∥B∥q∞]

1
q
)−2

,

and we see that limε→0 α(ε, p) = 0. □

Analogously to the sub-Riemannian setting, however, it is not possible to recover a T2 inequality via

the contraction principle, as the next result shows.

Proposition 6.16. Let Ω̃ ⊆ Ωε such that µ(Ω̃) = 1, and let L : Ωε → [0,∞] be a measurable function

such that

dε(P1ω, P1ω̃) ≤ L(ω)Cε
H(ω, ω̃),

for all ω, ω̃ ∈ Ω̃. Then L /∈ L∞(µε).

Proof. Suppose for a contradiction that L ∈ L∞(µε). Define h ∈ H by ht = (t, 0, 0) ∈ R3, for all t ∈ [0, 1].

Then, similarly to Lemma 6.10, we can apply (6.12) and (6.10) to see that there exists a standard normal

random variable Z and a constant C(ε) > 0 such that

d2ε(B
ε
1, (T

ε
hB

ε)1) ≥ C(ε)|Z|.

We also have Cε
H(Bε, T ε

hB
ε) = ∥h∥H = 1. Thus C(ε)|Z| ≤ L(Bε). Since |Z| is not essentially bounded,

we arrive at a contradiction. □
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Finally, in the Riemannian setting, we do not observe the blow-up shown in Proposition 6.11. For

n ∈ N, define a cost Cε
n : Ω

ε ×Ωε → [0,∞) by

Cε
n(ω, ω̃)2 = 2n

2n∑
k=1

d2ε(ωtnk−1,t
n
k
, ω̃tnk−1,t

n
k
), ω, ω̃ ∈ Ωε.

Proposition 6.17. For any h ∈ H, we have

lim sup
n→∞

Cε
n(B

ε, T ε
hB

ε) ≤ Cε
H(Bε, T ε

hB
ε) = ∥h∥H,

almost surely.

Proof. Define Z by Zs,t = B−1
s,t (T

ε
hB)s,t, for s, t ∈ [0, 1] with s ≤ t, and h = Ψε(h). Let n ∈ N. By

Young’s inequality, we bound

Cε
n(B

ε, T ε
hB

ε)2 ≤ (1 + n)Cε
n(h,Z)2 + (1 + 1

n )C
ε
n(0,h)

2.(6.13)

As in (6.11), we bound dε(htnk−1
,htnk

) by the length of the curve h; i.e.

dε(htnk−1
,htnk

) ≤
∫ tnk

tnk−1

√
|ḣ1r|2 + |ḣ2r|2 + |ḣ3r|2 dr.

Applying the Cauchy–Schwarz inequality, we have

Cε
n(0,h)

2 = 2n
2n∑
k=1

d2ε(htnk−1
,htnk

) ≤
2n∑
k=1

∫ tnk

tnk−1

(
|ḣ1r|2 + |ḣ2r|2 + |ḣ3r|2

)
dr = ∥h∥2H,

and so

lim sup
n→∞

(1 + 1
n )C

ε
n(0,h)

2 ≤ ∥h∥2H.

Next, similarly to (6.12) and Remark 2.18, we have

h−1
s,tZs,t =

(
0,

∫ t

s

(
h1s,r dB

2
r − h2s,r dB

1
r

))
.

Therefore, using the estimate (6.10) and the fact that B is almost surely β-Hölder continuous for any

β ∈ (0, 1/2), there exists a constant c > 0 such that we have the almost sure bound

d2ε(0,h
−1
s,tZs,t) ≤ ε−2

∣∣∣ ∫ t

s

h1s,r dB
2
r

∣∣∣2 + ε−2
∣∣∣ ∫ t

s

h2s,r dB
1
r

∣∣∣2
≤ cε−2∥B∥2β |t− s|1+2β

∫ t

s

|ḣr|2 dr,

where ∥B∥β is the β-Hölder norm of B. Hence

Cε
n(h,Z)2 = 2n

2n∑
k=1

d2ε(0,h
−1
tnk−1,t

n
k
Ztnk−1,t

n
k
) ≤ cε−22n2−(1+2β)n∥h∥2H∥B∥2β = cε−2∥h∥2H∥B∥2β2−2βn,

and so limn→∞(1 + n)Cε
n(h,Z)2 = 0 almost surely. We conclude by (6.13). □

6.4. Γ-convergence of the cost functions. Despite the pointwise blow-up of the cost functions Cn that

we demonstrated in Proposition 6.11, we now show that Cn does converge to CH in a variational sense.

More precisely, the sequence Cn converges to CH in the sense of Γ-convergence, a notion of convergence
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for families of minimisation problems that is formulated in terms of asymptotic lower and upper bounds.

On a metric space (E, dE), we say that a sequence of functionals Fn : E → R ∪ {∞} Γ-converges to a

limit F∞ : E → R ∪ {∞} if

(i) for every sequence xn → x in E, we have F∞(x) ≤ lim infn→∞ Fn(xn); and

(ii) for every x ∈ E, there exists a sequence x̃n → x in E such that lim supn→∞ Fn(x̃n) ≤ F∞(x).

The sequence (x̃n) in condition (ii) is called a recovery sequence as it “recovers” the correct energy level

F∞(x) from the approximating energies Fn(x̃n) by adding suitable oscillations to x. One may view

Γ-convergence as describing the asymptotic behavior of energy landscapes, in close analogy with large

deviation principles, which characterise the asymptotics of probability measures via their rate functions.

Indeed, the interplay between Γ-convergence and large deviation principles has been studied in several

publications; see e.g. [Mar18, Ber18]. A central advantage of Γ-convergence is its stability property:

convergence of functionals implies convergence of minimal values and, under mild compactness assump-

tions, convergence of (almost) minimisers. For a comprehensive treatment we refer to the monographs

[DM93, Bra02, Rin18].

We will see that the Γ-convergence of the cost functions Cn implies the convergence of the associated

optimal transport problems; i.e. for every ν ∈ P(ΩG) there exists a sequence of probability measures

ν̃n ∈ P(ΩG) such that the associated transport costs TCn,2(ν̃
n,µ) converges to TCH,2(ν,µ) as n→ ∞.

In the Euclidean case with cost cn defined as in (6.4), we have for ω, ω̃ ∈ C0([0, 1];Rd) with h = ω− ω̃

the formula cn(ω, ω̃) =
∫ 1

0
|∂sĥn|2 ds, where ĥn is the piecewise affine interpolant for h. One readily

verifies that cn(ω, ω̃) converges to ∥h∥H if h ∈ H and to +∞ otherwise; cf. Lemma 6.4. In particular, the

Γ-convergence of cn also holds in this setting with the same limiting cost.

Recall that we consider the metric space (ΩG, d∞), where d∞ is the uniform metric defined in (2.13).

We start with the following lemma, which gives the pointwise convergence of the cost to the Cameron–

Martin norm for horizontal curves.

Lemma 6.18. Let h ∈ H, and let h = Ψ(h) denote its lift to ΩG. Then, for the family of cost functions

(Cn)n∈N defined in (6.2), we have Cn(0,h) ≤ ∥h∥H and limn→∞ Cn(0,h) = ∥h∥H.

Proof. Let h ∈ H and let h = Ψ(h). The curve t 7→ ht ∈ G is horizontal and therefore, for every

0 ≤ s < t ≤ 1, we have

dCC(hs,ht) ≤
∫ t

s

|ḣr|dr.

Applying Hölder’s inequality, we obtain the estimate

C2
n(0,h) = 2n

2n∑
i=1

dCC(htni
,htni−1

)2 ≤
2n∑
i=1

∫ tni

tni−1

|ḣr|2 dr = ∥h∥2H.

Taking the lim sup on the left-hand side gives lim supn→∞ Cn(0,h) ≤ ∥h∥H.

To show the lower bound, define a piecewise constant function gn : [0, 1] → [0,∞), for each n ∈ N,

by gnt = 2ndCC(htni
,htni−1

) for t ∈ [tni−1, t
n
i ), i ∈ {1, . . . , n}. Note that the sequence (gn) is uniformly

bounded in L2([0, 1]). Hence, we can extract a weakly converging subsequence such that gnk → g in

L2([0, 1]). For given 0 ≤ r < s ≤ 1, we can find indices in, jn ∈ {1, . . . , 2n} such that, for rn = tnin and

sn = tnjn ,

0 ≤ rn ≤ r < s ≤ sn ≤ 1, and lim
n→∞

rn = r, lim
n→∞

sn = s.
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By the triangle inequality and the continuity of t 7→ ht, there is a sequence (εn) ⊂ R such that εn → 0

and

dCC(hr,hs) ≤
jn∑

i=in

dCC(htni
,htni−1

) + dCC(hr,hrn) + dCC(hs,hsn) =

∫ sn

rn

gnt dt+ εn.

Passing to the limit as n → ∞, we infer that dCC(hr,hs) ≤
∫ s

r
gt dt. Now, by the minimality of the

metric derivative (see Remark 2.8), we obtain gt ≥ |ḣt| for almost every t ∈ (0, 1). Finally, since

C2
n(0,h) = 2n

∑2n

i=1 d
2
CC(htni

,htni−1
), lower-semicontinuity of the norm implies that

lim inf
n→∞

C2
n(0,h) = lim inf

n→∞

∫ 1

0

(gnt )
2 dt ≥

∫ 1

0

g2t dt ≥ ∥h∥2H,

which finishes the proof. □

The next lemma shows that the cost Cn blows up along sequences ωn, ω̃n that converge to limits ω, ω̃

whose difference ω−1ω̃ is a purely vertical process; i.e. t 7→ (ω−1ω̃)t = (0, θt).

Lemma 6.19. Let ω, ω̃ ∈ ΩG, and let (ωn), (ω̃n) ⊂ ΩG be sequences such that limn→∞(ωn, ω̃n) =

(ω, ω̃). Suppose that there exists a non-zero θ ∈ ΩG such that θt = (0, θt) and ω̃t = ωtθt for all

t ∈ [0, T ]. Then limn→∞ Cn(ω
n, ω̃n) = ∞.

Proof. Suppose for contradiction that Cn(ω
n, ω̃n) is bounded uniformly in n. We use the equivalence of

the gauge distance dg and the Carnot–Carathéodory distance dCC from (2.11) to obtain the lower bound

Cn(ω
n, ω̃n)2 = 2n

2n∑
k=1

dCC

(
ωn

tnk−1,t
n
k
, ω̃n

tnk−1,t
n
k

)2 ≥ 2n

κ

2n∑
k=1

dg
(
ωn

tnk−1,t
n
k
, ω̃n

tnk−1,t
n
k

)2 ≥ 2n

κ

2n∑
k=1

∣∣θntnk−1,t
n
k

∣∣,
where θns,t = π2((ω

n
s,t)

−1ω̃n
s,t) are the increments of the vertical process. Let θ̂nt denote the piecewise

affine interpolant associated with the increments θntnk−1,t
n
k
with θ̂n0 = 0. The above estimate gives the

bound Cn(ω
n, ω̃n)2 ≥ 2n

κ ∥θ̂n∥W 1,1 , where the left-hand side is uniformly bounded with respect to n by

assumption. Thus θ̂n → 0 in W 1,1
0 ([0, 1],Rd2) and so θ ≡ 0 as W 1,1

0 ([0, 1],Rd2) ↪→ C0([0, 1],Rd2), giving a

contradiction. We conclude that limn→∞ Cn(ω
n, ω̃n) = ∞. □

Now we prove condition (ii) in the definition of Γ-convergence for Cn, i.e. the existence of a recovery

sequence. In fact, we show a stronger version; see Remark 6.23.

Proposition 6.20. Let ω, ω̃ ∈ ΩG and let (ωn) ⊂ ΩG be a sequence such that ωn → ω. Then there

exists a sequence (ω̃n) ⊂ ΩG such that ω̃n → ω̃ and

(6.14) lim sup
n→∞

Cn(ω
n, ω̃n) ≤ CH(ω, ω̃).

Proof. We only have to consider the case ω̃ = Thω for h ∈ H, since the right-hand side in (6.14) is

otherwise infinite by definition of CH in (2.18), and the inequality holds trivially. Let ω ∈ ΩG, h ∈ H,

and ω̃ = Thω. Consider a sequence (ωn) ⊂ ΩG such that ωn → ω in ΩG. For each n ∈ N, define

ωn := Thω
n ∈ ΩG. By the continuity of the shift map from Proposition 2.16, ωn → ω̃ = Thω in ΩG. As

in Remark 2.18, we introduce the non-commutativity error

θn
s,t := h−1

s,t (ω
n
s,t)

−1ωn
s,t =

(
0, θns,t

)
,

where θns,t =
(∫ t

s

Whs,r ⊗ dωn
r

)
.
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We define ϑn ∈ ΩG such that its increments satisfy (ϑn
tnk−1

)−1ϑn
tnk

= θn
tnk−1,t

n
k
. Indeed, we set ϑn

t = (0, ϑnt ),

where

ϑn0 = 0 and ϑnt = ϑntnk−1
+ θntnk−1,t

, for t ∈ (tnk−1, t
n
k ], k ∈ {1, . . . , 2n}.

We emphasise that, for any t ∈ [0, 1], ϑn
t is an element in the centre of the group G. In particular, it

commutes with every element in G. Therefore, defining the curve t 7→ ω̃n
t = ωn

t (ϑ
n
t )

−1 ∈ G, we obtain

that its increments satisfy

ω̃n
s,t = ωn

s,t(ϑ
n
s,t)

−1 = (ϑn
s,t)

−1ωn
s,t, 0 ≤ s ≤ t ≤ 1.

Using the left-invariance of dCC and the definition of ϑn, we find that, for k ∈ {1, . . . , 2n},

dCC(ω
n
tnk−1,t

n
k
, ω̃n

tnk−1,t
n
k
) = dCC

(
0, (ωn

tnk−1,t
n
k
)−1ωn

tnk−1,t
n
k
(ϑn

tnk−1,t
n
k
)−1
)

= dCC

(
0,htnk−1,t

n
k
θn
tnk−1,t

n
k
(θn

tnk−1,t
n
k
)−1
)
= dCC(0,htnk−1,t

n
k
).

Lemma 6.18 now allows us to pass to the lim sup. More precisely, we have that

lim sup
n→∞

Cn(ω
n, ω̃n) = lim sup

n→∞
Cn(0,h) ≤ CH(ω, ω̃).

It remains to show that ω̃n → ω̃. Due to the convergence ωn → ω̃ it suffices to show that ϑn → 0 in

ΩG or, equivalently, ϑn → 0 in C([0, 1],Rd2). Using the definition of ϑn, we find a constant C > 0 such

that

∥ϑn∥∞ ≤ C sup
k=1,...,2n

max
i<j

sup
t∈[tnk−1,t

n
k ]

|ωn,i
t −ωn,i

tnk
|
∥∥ḣj∥∥

L1 .

Since ωn converges uniformly to ω, the right-hand side vanishes as n→ ∞. □

We now prove the lower estimate that is required in condition (i) of the definition of Γ-convergence.

Proposition 6.21. Let ω, ω̃ ∈ ΩG, and let (ωn), (ω̃n) ⊂ ΩG be sequences such that limn→∞(ωn, ω̃n) =

(ω, ω̃). Then lim infn→∞ Cn(ω
n, ω̃n) ≥ CH(ω, ω̃).

Proof. Consider a pair of curves (ω, ω̃) ∈ ΩG × ΩG and a pair of sequences (ωn, ω̃n) ⊂ ΩG × ΩG such

that limn→∞(ωn, ω̃n) = (ω, ω̃). We will consider three cases.

Case 1a. First, we consider the case that ω̃ = Thω for some h ∈ H. We may assume that I :=

lim infn→∞ Cn(ω
n, ω̃n) < ∞, since otherwise the inequality holds trivially. Let hn = π1ω̃

n − π1ω
n so

that hn → h in C([0, 1],Rd1). We now apply Lemma 6.4 (iii), to see that

lim inf
n→∞

Cn(ω̃
n,ωn)2 ≥ lim inf

n→∞
2n

2n∑
k=1

|hntnk − hntnk−1
|2 = lim inf

n→∞
∥ĥn∥2H,(6.15)

where ĥn is the piecewise affine interpolant of hn. Since I ∈ [0,∞), we can assume that ĥn is bounded in

H and is weakly converging to a limit h ∈ H, which we see is equal to h. By weak lower semicontinuity

of the L2 norm we obtain lim infn→∞ Cn(ω̃
n,ωn)2 ≥ ∥h∥2H.

Case 1b. Now suppose that ω̃ = Thω, where h = π1ω̃ − π1ω /∈ H. Then CH(ω, ω̃) = ∞. Supposing

again that I := lim infn→∞ Cn(ω
n, ω̃n) < ∞, following the same argument as above leads to h ∈ H,

which is a contradiction. Thus, lim infn→∞ Cn(ω̃
n,ωn)2 = ∞.

Case 2. We now assume that h := π1ω̃ − π1ω ∈ H but ω̃ ̸= Thω; i.e. ω̃ is not a shift of ω. We show

that Cn(ω̃
n,ωn) → ∞. Define ω̂ = Thω such that, by assumption, ω̂ ̸= ω̃ but π1ω̂ = π1ω̃. Therefore,
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there exists θ ∈ C([0, 1],Rd2) such that θ ̸≡ 0 and ω̃ = ω̂θ with θ = (0, θ). By Proposition 6.20, we find

a sequence ω̂n such that ω̂n → ω̂ and

(6.16) lim sup
n→∞

Cn(ω
n, ω̂n) ≤ CH(ω, ω̂) = ∥h∥H <∞.

Now, by the triangle inequality and the estimate (a+ b)2 ≤ 2a2 + 2b2, for any a, b ∈ R, we see that

Cn(ω̂
n, ω̃n)2 ≤ 2Cn(ω

n, ω̂n)2 + 2Cn(ω̃
n,ωn)2.

By (6.16), the first term on the right-hand side is bounded by 2∥h∥2H. By Lemma 6.19, we also have

limn→∞ Cn(ω̂
n, ω̃n)2 = ∞. Thus we conclude that limn→∞ Cn(ω̃

n,ωn) = ∞. □

Combining Propositions 6.20 and 6.21, we deduce the following Γ-convergence.

Corollary 6.22. On ΩG×ΩG equipped with the uniform topology, we have the Γ-convergence Cn
Γ−→ CH.

Proof. The liminf inequality follows directly from Proposition 6.21. The limsup inequality in this setting

reads: For every pair (ω, ω̃) ∈ ΩG ×ΩG, we can find a sequence (ωn, ω̃n) converging to (ω, ω̃) such that

lim sup
n→∞

Cn(ω
n, ω̃n) ≤ Cn(ω, ω̃).

Proposition 6.20 tells us that in fact we can take any sequence ωn converging to ω and the sequence ω̃n

constructed via adding a suitable perturbation. □

Remark 6.23. Let us note that Proposition 6.20 is stronger than the standard lim sup condition in Γ-

convergence. In particular, we can choose the constant sequence ωn = ω such that the recovery sequence

is obtained via a map Φn(ω, ω̃) = (ω, ω̃n). We will use this map Φn to construct sequences of transport

plans λ̃n that are recovery sequences for the family of optimal transport problems associated with Cn;

see Proposition 6.26 below.

Having shown the Γ-convergence of the cost functions Cn, we can now deduce the Γ-convergence of the

associated transport problems. For n ∈ N, define the family of transport functionals In : P(ΩG×ΩG) →
[0,∞] and I∞ : P(ΩG×ΩG) → [0,∞] via

In(λ) =

∫
ΩG×ΩG

C2
n dλ and I∞(λ) =

∫
ΩG×ΩG

C2
H dλ, λ ∈ P(ΩG ×ΩG).

Proposition 6.24. Let (λn) ⊂ P(ΩG ×ΩG) be a sequence of probability measures such that λn ⇀ λ in

P(ΩG ×ΩG). Then

lim inf
n→∞

In(λ
n) ≥ I∞(λ).

Proof. By Skorokhod’s representation theorem, there exists a probability space (Ξ,A,P) and random

variables Y n : Ξ → ΩG × ΩG and Y : Ξ → ΩG × ΩG such that λn = Y n
#P, λ = Y#P, and Y n → Y

P-almost surely. We conclude that

lim inf
n→∞

∫
ΩG×ΩG

Cn(ω,ω)2 dλn = lim inf
n→∞

∫
Ξ

Cn(Y
n)2 dP

≥
∫
Ξ

lim inf
n→∞

Cn(Y
n)2 dP ≥

∫
Ξ

CH(Y )2 dP =

∫
ΩG×ΩG

CH(ω,ω)2 dλ,

by Fatou’s lemma and Proposition 6.21. □
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Remark 6.25. Given Proposition 6.24, we find a much more direct proof of Theorem 6.6. Indeed,

combining Lemma 6.3 and Proposition 6.24 yields the result immediately.

Proposition 6.26. Let λ ∈ P(ΩG ×ΩG). Then there exists a sequence (λ̃n) ⊂ P(ΩG ×ΩG) such that

λ̃n ⇀ λ and

(6.17) lim sup
n→∞

In(λ̃
n) ≤ I∞(λ).

Proof. We may assume that the right-hand side in (6.17) is finite as the inequality is trivially true

otherwise. In particular, we have (ω,ω) 7→ C2
H(ω,ω) ∈ L1(λ) and, for λ-almost every (ω,ω) ∈ ΩG×ΩG,

we have that ω = Thω for h = π1(ω
−1ω) ∈ H.

Define λ̃n = Φn
#λ ∈ P(ΩG × ΩG), where Φn : ΩG × ΩG → ΩG × ΩG maps (ω, ω̃) to (ω, ω̃n) as in

Remark 6.23. Then, for any (ω, ω̃) ∈ ΩG ×ΩG, we have Φn(ω, ω̃) → (ω, ω̃) and λ̃n ⇀ λ as n→ ∞. By

Propositions 6.20 and 6.21,

(6.18) lim
n→∞

Cn(Φ
n(ω, ω̃)) = CH(ω, ω̃).

Moreover, by Lemma 6.18, we have Cn(ω, ω̃
n) ≤ ∥h∥H = CH(ω, ω̃). Using Fatou’s lemma with

integrable upper bound C2
H(ω, ω̃) gives

lim sup
n→∞

∫
ΩG×ΩG

C2
n(ω, ω̃) dλ̃n = lim sup

n→∞

∫
ΩG×ΩG

C2
n(Φ

n(ω, ω̃)) dλ ≤
∫
ΩG×ΩG

lim sup
n→∞

C2
n(Φ

n(ω, ω̃)) dλ.

The assertion now follows from (6.18). □

Corollary 6.27. On P(ΩG ×ΩG) equipped with the weak topology, we have the Γ-convergence In
Γ−→ I∞.

The following theorem is a version of the fundamental theorem of Γ-convergence in the present case.

Theorem 6.28. Let η ∈ P(ΩG). Then TCn,2(η, ·)
Γ−→ TCH,2(η, ·) with respect to the weak topology on

P(ΩG). That is

(i) For any ν ∈ P(ΩG) and any (νn) ⊂ P(ΩG) such that νn ⇀ ν, lim infn→∞ TCn,2(η,ν
n) ≥

TCH,2(η,ν); and

(ii) For any ν ∈ P(ΩG), there exists a sequence (ν̃n) ⊂ P(ΩG) such that limn→∞ TCn,2(η, ν̃
n) =

TCH,2(η,ν).

Proof. (i) Let ν ∈ P(ΩG) and (νn) ⊂ P(ΩG) such that νn ⇀ ν, and let (λn) ⊂ P(ΩG × ΩG) be a

sequence of optimal transport plans for TCn,2(η, ν̃
n). We can assume that λn converges weakly to a

limit λ ∈ P(ΩG ×ΩG) since its marginals are tight by Prokhorov’s theorem; see [AGS08, Lemma 5.2.2].

The limit λ has marginals η and ν and is hence an admissible transport plan for TCH,2(η,ν). Using

Proposition 6.24, we get the chain of inequalities

TCH,2(η,ν) ≤
∫
ΩG×ΩG

C2
H(ω,ω) dλ ≤ lim inf

n→∞

∫
ΩG×ΩG

C2
n(ω,ω) dλn = lim inf

n→∞
TCn,2(η, ν̃

n).

(ii) Now let λ ∈ P(ΩG × ΩG) be an optimal transport plan for TCH,2(η,ν) (note that CH is lower

semi-continuous; see Lemma 2.20). Let the sequence of transport plans (λ̃n) ⊂ P(ΩG ×ΩG) be given as

in Proposition 6.26, and define ν̃n as the second marginal of λ̃n, for n ∈ N. The first marginal of λ̃n is
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fixed to η for all n ∈ N. Thus ν̃n ⇀ ν. Moreover, by Proposition 6.26 and the optimality of λ,

lim sup
n→∞

∫
ΩG×ΩG

C2
n(ω,ω) dλ̃n ≤ T2

CH,2(η,ν).

On the other hand, if (λ
n
) ⊂ P(ΩG ×ΩG) is a sequence of optimal transport plans for TCn,2(η, ν̃

n), we

can assume that λ
n
⇀ λ, where the limit λ has marginals η and ν. By Proposition 6.24, we get

T2
CH,2(η,ν) ≤

∫
ΩG×ΩG

C2
H(ω,ω) dλ ≤ lim inf

n→∞
T2

Cn,2(η, ν̃
n).

Combining both estimates proves the claim. □

Remark 6.29. In general, we cannot rule out that there exists a sequence νn converging to some limit

ν such that limn→∞ TCn,2(η,ν
n) > TCH,2(η,ν). The crucial point in Theorem 6.28 is that the sequence

ν̃n is a special sequence constructed via the push-forward of the recovery map Φn. It is an interesting

question whether the following stronger result holds: Let δΠ(η,νn) denote the convex indicator function

(taking values in {0,∞}) for the set of admissible plans, i.e. δΠ(η,νn)(λ) = 0 if and only if λ ∈ Π(η,νn),

and let ν ∈ P(Ω), (νn) ⊂ P(ΩG) such that νn ⇀ ν and supn∈N H(νn∥η) < ∞. Do we have the Γ-

convergence In + δΠ(η,νn)
Γ→ I∞ + δΠ(η,ν)? This property would imply that TCn,2(η,ν

n) → TCH,2(η,ν)

for every converging sequence νn with finite relative entropy.

7. Beyond step-2 Carnot groups

Parts of this work are valid in the generality of general Carnot groups (see, e.g. [BLU07]). However,

Carnot groups for which the log-Sobolev inequality is known are the Heisenberg group and more general

H-type groups, which are examples of step-2 Carnot groups, as discussed in Section 2.2. This explains our

focus on step-2. Nevertheless, Theorem 5.1 holds for general Carnot groups with no restriction on the step

of the group, and the proof remains unchanged, given the appropriate definitions. Similarly, Lemma 6.1,

Proposition 6.2, and Lemma 6.3 carry over without change to the general Carnot group setting. Finally,

Theorem 6.6 also holds for G = Fd1,N , i.e. for step-N free Carnot groups, under additional regularity

assumptions for N > 2. On the space of p-variation paths, for any p such that the shift by an absolutely

continuous path is well defined, the proof of Theorem 6.6 remains valid; see also Remark 2.17.
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[Ald81] David J. Aldous. Weak convergence and general theory of processes. Unpublished monograph: Department

of Statistics, University of California, Berkeley, 1981.



TRANSPORT INEQUALITIES FOR CARNOT PATH SPACES 38
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