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Abstract

We consider Talagrand-type transportation inequalities for the law of Brownian motion on Carnot groups. An
important example is the lift of standard Brownian motion to the Brownian rough path. We present a direct
proof on enhanced path space, which also yields equality when restricting to adapted couplings in the transport
problem. Moreover, we prove a Talagrand inequality for the heat kernel measure on Carnot groups and deduce
the inequality for the law of Brownian motion on Carnot groups via a bottom-up argument. Our study of this
enhanced Wiener measure contributes to a longstanding programme to extend key properties of Wiener measure
to the non-commutative setting of the enhanced Wiener measure, which is of central importance in Lyons’ rough
path theory. With a non-commutative sub-Riemannian state space, we observe phenomena that differ from the
Euclidean case. In particular, while a top-down projection argument recovers Talagrand’s inequality on Euclidean
space from the corresponding inequality on the path space, such a projection argument breaks down in the Carnot
group setting. We further study a Riemannian approximation of the Heisenberg group, in which case the failure of
the top-down projection can be partially overcome. Finally, we show that the cost function used in the Talagrand

inequality is a natural choice, in that it arises as a limit of discretised costs in the sense of I'-convergence.
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1. INTRODUCTION

Let u € P(E) be a Borel probability measure on a Polish space E. Given a measurable cost function
c: E x E— [0,00], we say that p satisfies Talagrand’s 73 transport inequality with constant o > 0, and
write u € T2(F, ¢, ), if for every v € P(F) it holds that

2

T2, (1, v) = inf / Az, y)d\(z,y) < = H(v||p),
o2, v) et (z,y)dA(z,y) < —H(v||n)

where TI(u, v) denotes the set of couplings between p and v and H(v||u) is the relative entropy of v with
respect to p. If the cost is induced by a metric d on E, that is ¢(x,y) = d(z,y), the above definition

reduces to the classical 2-Wasserstein formulation,
2
W) < = H@lw), v e P(B)

We note, without going into details, that there is an important connection to concentration of measure
and the log-Sobolev inequalities by results from [OV00]. Talagrand [Tal96] first proved a Tz inequality
for the standard Gaussian measure on R? with Euclidean cost. A 75 inequality for R%-valued Brownian
motion with a cost given in terms of the Cameron-Martin distance first appeared in [FU02]. Later [Leh13]
gave a similar proof, using the intrinsic drift from [F6186, F6188] and Girsanov’s theorem to prove the
T2 inequality directly on Wiener space. Alternative proofs using Girsanov’s theorem also appeared in
[DGWO04] and [FU04]. On the other hand, the T inequality on Wiener space can also be derived as a
consequence of the Gaussian product case. In fact, [Tal96] already considered the infinite Gaussian prod-
uct case; cf. [Riel7] and reference therein for explicit constructions. This so-called bottom-up approach
uses the tensorisation property of the 75 inequality and a truncated expansion of the Brownian motion.
As observed in [Leh13] and [F6122], one can also recover Talagrand’s T3 inequality on R? from the 73
inequality on path space by considering a Brownian bridge. This gives a so-called top-down approach
to Talagrand’s 72 inequality. In this paper, a first study connecting aspects of optimal transport with
rough analysis, we investigate the validity of the 75 inequality, as well as the bottom-up and top-down
approaches, when R? is replaced by a certain Carnot group.

The advent of rough path theory (see, e.g. [Lyo98, FV10]) has highlighted the fundamental importance
of (d-dimensional) Brownian motion B lifted to the free step-2 nilpotent group (over R?), which is an

example of Brownian motion with values in a step-2 Carnot group G. Denoted by

B, = (Bt, Anti(/t B, ®st)>,
0
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this process is also known as horizontal Brownian motion, enhanced Brownian motion, or Brownian rough
path, depending on authors and context. When d = 2, the relevant group is nothing but the classical

(2 + 1)-dimensional Heisenberg group H =2 R? with group law
((,9,2), (@9, 2") = (z+ 2"y + o', 2 4+ 2"+ (2y —2'y)/2).

Though not directly related to this work, we note that the interplay of optimal transport and Heisenberg
groups was pioneered in [AR04]; see also [AS20] for recent work in the context of Carnot groups.

Let us agree on some notation. Unless otherwise stated, u = Law(B) denotes Wiener measure on
Q = Co([0,T],R?), with Gaussian unit time marginal p; = N(0,1). Similarly, call p = Law(B) the
enhanced Wiener measure on

Q¢ = Co([0,T1],G),

with (non-Gaussian) unit time marginal p;, which we call the heat kernel measure on G. Over the
last 20 years, starting with [LQZ02], numerous properties of Wiener measure (including sample path
regularity, Cameron—Martin shifts, Schilder’s large deviations, Stroock—Varadhan support theorem) have
been extended from p to p, with significant benefits to stochastic analysis (see, e.g. [FV10, Lyol4, FH20)
and references therein). See also [CF26] for an abstract view. This naturally raises the question of
whether Talagrand’s 73 inequality for Gaussian measures (respectively, Wiener measure) extends to heat
kernel measures (respectively, enhanced Wiener measure) on G, and to what extent the bottom-up and
top-down approaches remain valid. In this article, we provide a reasonably complete answer to these
questions.

We prove the 75 inequality for g with the cost function Cy on Qg,

. Ih]l2, i@ = Thw, for some h € H,
Cp(w,w) =
400, otherwise,

where H is the Cameron—Martin space of y and T}, is (essentially') the translation (or shift) operator
known from rough path theory [FV10]. We give multiple strategies to prove the Tz inequality for our
cost C'yy on g, offering both a bottom-up strategy, as well as a direct approach via an application of a
contraction principle [DGWO04, Riel7] or a lifting of the result from [Leh13] to the Carnot group setting,.

The bottom-up approach consists of showing a 75 inequality for the heat kernel measure pq on the
Carnot, group and inferring the result for the enhanced Wiener measure p by using the tensorisation
property of the Talagrand inequality. Our approach is to discretise the Brownian motion in time, rather
than to consider an expansion as in [Riel7, F6122]. By an Otto—Villani argument [OV00, GL13], the
T2 inequality for the heat kernel measure on a Carnot group follows from a log-Sobolev inequality. The
latter is only partially available: from [Li06, Eld10] we have certain heat semigroup estimates on the
Heisenberg (and so-called H-type) groups, which imply the required log-Sobolev inequalities. Given the
correct heat semigroup estimate, our proof does not rely on an H-type setting and holds true for general
step-2 Carnot groups.

We further prove the 75 inequality for p directly on the path space, via two different approaches. First,
we apply a contraction principle to the lift of a standard Brownian motion to deduce the result from the

T2 inequality for Wiener measure. This approach also extends to the lifts of more general Gaussian

1Contrary to the standard rough path setting, we deal here with general step-2 Carnot groups.
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processes; cf. [FV10, Chapter 15]. Alternatively, we exploit Follmer’s intrinsic drift from [F6186, F6188]
to prove the 75 inequality for w, following the strategy of [Leh13]. The latter approach gives additional
insights into so-called adapted transport inequalities. As noted in [Ald81, Las18, BBBE20a, BBBE20b],
in the case of optimal transport problems involving laws of stochastic processes, it is desirable to consider
adapted couplings rather than general couplings between the laws. We identify the optimal adapted
transport plan for the cost Cy and show that equality holds in the 73 inequality when restricting to
adapted couplings.

A key difference from the Euclidean setting is that the top-down approach fails in the non-commutative
sub-Riemannian setting of Carnot groups. Indeed, in the Euclidean setting, given the 75 inequality for
Wiener measure p, a contraction principle can be applied to deduce the 73 inequality for p;. However, for
the enhanced Wiener measure p, this contraction principle argument breaks down and we cannot deduce
the 73 inequality for the heat kernel measure p; from the corresponding inequality for pu. Considering a
Riemannian approximation (still non-commutative) to the Carnot group, we find that the validity of the
top-down approach is partially recovered. Given the 75 inequality for the law p® of Brownian motion on
the approximating Riemannian manifold, the contraction principle implies that p§ satisfies a 7, inequality
for p € [1,2), but not for p = 2.

We remark that our cost Cy differs from the one considered in [Riel7, Corollary 1.4], which is defined
in terms of the Cameron—Martin norm of the difference of the path in the group projected onto its first
component, and which turns out to be suboptimal (see the discussion in Section 2.3). Our cost Cy is a
natural choice in the following sense: C3 can be obtained as the variational limit (more precisely, the

I-limit; see Section 6.4) of “finite-dimensional costs” C,, that arise in our bottom-up approach:
2’71
CZ(QJ,U) = 2”Zd%c(wtg_vtE,atg_l,tg), w,UE QG,
k=1

where dcc denotes the Carnot—Caratheodory metric on G. We prove in Section 6.4 that the I'-convergence
of the cost functions C), also leads to the I'-convergence of the optimal transport costs T¢, 2(p, ) to
Ty 2(p, ).

Note that, while our direct approach to proving the 75 inequality gives an elegant and short proof that
holds in greater generality, the bottom-up approach, and in particular the I'-convergence, yields clear

information on the choice of the most natural cost function.

For the reader’s convenience we summarise our findings as concise statements.

Theorem 1.1 (Direct approach, cf. Theorem 3.3, and extensions in Section 4). The measure p on Qg
satisfies the Ta inequality p € T2(Qs, Cx, 1).

Theorem 1.2 (Bottom-up, cf. Theorem 6.6). Suppose that there exists o > 0 such that pu1 € T2(G, dcc, @).
Then p € T2(Qg, Cy, ).

Theorem 1.3 (73 on group, cf. Theorem 5.3). Let G be an H-type group. Then there exists a > 0 such
that 1€ 7—2(63 dCCv OZ),



TRANSPORT INEQUALITIES FOR CARNOT PATH SPACES

%28

Theorem 1.4 (Adapted couplings, cf. Theorem 3.3). Let v be a probability measure on Qg with v < .

Then the optimal adapted coupling between pu and v is given explicitly and
TE, 2(p,v)? = 2H(v||p).

Theorem 1.5 (Cost approzimation, cf. Corollary 6.22 and Theorem 6.28).

(i) Pointwise convergence C,, — Cy fails (by example),
(ii) T-convergence? C,, RN Cy holds with respect to the uniform topology on Qg x Qg,
(#ii) Te, 2(,+) 5 Ty, 2(p, -) with respect to the weak topology on P(Qg).

Theorem 1.6 (Top-down — validity vs. failure). A contraction principle
(i) gives the implication p € To(Q, |. — .|, @) = w1 € To(RL|. — .|, ),
(i1) does not give p € To(Q,Cy, ) = w1 € T3(G, dcc, '), no matter a,a’ > 0,
(tii) gives a weak implication p® € To(Qm.,C5, ) = pi € Tp(He, d-,al(e,p)), for p € [1,2), where

(He,de) is a Riemannian approzimation to the (2 + 1)-dimensional Heisenberg group.

The paper is structured as follows. Section 2 contains preliminary results on Talagrand inequalities
and introduces our setting of step-2 Carnot groups. In Section 3, we present a direct approach to proving
the 75 inequality for the law of Brownian motion on a Carnot group via Follmer’s intrinsic drift, and we
show equality for the case of adapted transport plans. In Section 4, we prove the 73 inequality for general
Gaussian rough paths by a direct approach using a contraction principle. Section 5 studies the Talagrand
inequality for the heat kernel measure p; on Carnot groups, as well as its connection to log-Sobolev
inequalities and heat semigroup estimates. Section 6.1 presents a bottom-up approach to proving the 7T
inequality for p as a consequence of the results of Section 5. In Section 6.2, we show by example that
we cannot project the 75 inequality for g down to a 73 inequality for w1, and that the cost functions C,,
blow up pointwise. In Section 6.3, we study a Riemannian approximation of the Heisenberg group, for
which we can partially overcome the issues of the cost blow-up and failure of projection. In Section 6.4,
we prove the I'-convergence of the costs C), to Cy. We conclude in Section 7 by commenting on the

extension of our results to higher order Carnot groups.

2. SETTING

In this section, we first collect relevant definitions and results related to Talagrand inequalities. Next,
we define our setting of step-2 Carnot groups and introduce a Brownian motion with paths in a Carnot
group, as well as the lift and shift operation on paths. Using the shift operator, we define a suitable cost

function C%, which appears in our T3 inequality.

2.1. Preliminaries on Talagrand inequalities. Given two Borel probability measures u, v on a Polish
space E, let TI(u, v) denote the set of probability measures on E' x E with marginals i, v. Such measures

are called couplings (or transport plans). The relative entropy of v with respect to u is defined as
log ¥ dv if v < p,
Hl = { 7518 !
400 otherwise.

2Recall that I'-convergence is a natural notion of convergence from the theory of calculus of variations for sequences of
functionals, which guarantees the convergence of minimisers and minima.
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Definition 2.1. Let E be a Polish space and let ¢: E x E — [0, 0] be a measurable function. We say
that a Borel probability measure p satisfies the cost-information inequality on E with cost ¢, parameter
a > 0, and exponent p € [1,00) if, for any Borel probability measure v on E,

2 v
z — ~ P
Tep(p,v) < aH(z/Hu), where T, ,(p,v) = ()\Egbfw)//c (x,y) d/\(x,y)) .

We write p € T,(F, ¢, ) and say that u satisfies a 7, inequality.®

In particular, we are interested in the case of p = 2. On R, Talagrand [Tal96] proved that the standard
Gaussian measure satisfies a 75 inequality with Euclidean cost. Talagrand’s result has since been lifted
to the Wiener measure on path space.

Let B denote a standard Brownian motion on RY, let py = Law(B;) denote the standard Gaussian
measure on R?, and let ; = Law(B) denote the Wiener measure on 2 := Cy([0,1],R?). The Cameron—

Martin space for u is defined as
(2.1) H = { h: [0,1] — R? absolutely continuous : h € L?, ho =0} = W,"*([0,1],R),

and the Cameron-Martin norm || - ||3 is defined by [|h||%, = fol |\hs|?dt, for h € H. Throughout the text,
for p € [1,00], WP([0,1],R%) denotes the usual Sobolev space, and W, *([0,1],R%) the subspace such
that o = 0 for = € W, ?([0,1],R%).
Define the Cameron—Martin cost ¢z : © x  — [0, c0] by
||y_x||'H7 9_3357'[’

(22) C’H(l‘,y) =
+o00 otherwise.

Then the Wiener measure y satisfies the 73 inequality (cf. [FU02, DGWO04, FU04, Leh13]):
(2.3) wE T2, e, 1).

Contraction principle. The following contraction principle for 7, inequalities is a special case of [Riel?,

Lemma 4.1].

Lemma 2.2. Let (E,d), (S, p) be metric spaces, with (E,d) a Polish space, let c: E x E — [0,00] and
¢: S xS — [0,00] be Borel-measurable functions, and let n be a Borel probability measure on E. Let

Y: E— S and L: E — [0,00] be measurable functions such that

c(P(z),¥(T)) < L(z)c(x, T),

for all x,T € Ey, where Eqg C E satisfies n(Ey) = 1.
Suppose that 1 € Ta(E, ¢, ), for some a € (0,00). Then, for any p € [1,2] such that L € L(n) for
1= 2 e (2], e have to < TS I

Remark 2.3. In particular, the contraction principle in Lemma 2.2 allows us to upgrade the topology

used in Theorem 1.1 from the uniform topology to the S-Holder topology for 3 € (%, 1) (cf. [FV10, Section

8] for the definition of this topology). Indeed, for E = Cy([0,1],G) and pu € P3(E) the law of Brownian

3Since P is just another instance of a measurable function on E X E, there is no loss of generality in taking p = 1. However,
we find this definition useful later in the paper.
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motion on G, we have that [,L(E) = 1, where E = Cg([O, 1],G) for some g € (%, %) Thus, defining
¢ = |z, 5, the result of Theorem 1.1 that p € T2(E, ¢, o) extends to p € T3(E, ¢ a) by Lemma 2.2.

We remark that such a direct upgrade of the topology is not observed in other settings. For example,
showing that a large deviation principle can be lifted from the uniform topology to the Holder topology
is significantly more involved; see [FV05, Theorem 39], whose proof is based on the inverse contraction

principle for large deviations [DZ10, Theorem 4.2.4].

Adapted T, inequalities. For a metric space (5,d), the p-Wasserstein distance Tq ), metrises the weak
topology on P,(S). When elements of S should be regarded as stochastic processes, however, this
topology is not sufficient to capture the flow of information encoded in the filtrations associated to the
processes. The adapted weak topology and adapted Wasserstein distance have been shown to be more
suitable; see, e.g. [Ald81, Lasl8, BBBE20a, BBBE20b]. The adapted Wasserstein distance is a special
case of the adapted (also called bicausal) optimal transport problem, defined as follows.

Definition 2.4. Let E be a Polish space and p,v € P(C([0,1], E)). Let A € II(ps,v) and let X, Y be
C([0,1], E)-valued random variables with A\ = Law(X,Y). Write FX (resp. FY) for the completion of
the natural filtration of X (resp. Y') with respect to u (resp. v). We say that A is an adapted coupling if
the following conditional independence holds under A: for all ¢ € [0, 1],

FY is independent of F{* given FX and FX is independent of F} given FY .
We denote the set of all such couplings by I.q(p,v). For a measurable function c: C([0,1], E) x
C([0,1], E) — [0, 0], define the adapted optimal transport problem

) = (ot [ [eenaen)’

AETTaq (p,v

We say that € P(C([0,1], E)) satisfies an adapted T, inequality for some p € [1,00) if there exists a > 0

such that
Tad < 2 H
C,p(/’L’ V) —_ (I/Hﬂ)'

In this adapted setting, [Las18, Lemma 5] and [F6122, Theorem 3] show that Wiener measure satisfies
an adapted 72 inequality with o = 1 and that equality holds; i.e.

(2.4) T 2(p,v) = V2H(v| ).

Remark 2.5. For continuous-time stochastic processes, [BBPT25] give an alternative definition of the
adapted optimal transport problem and adapted Wasserstein distance that has additional desirable topo-
logical properties. The value of this problem is defined such that it lies between T, and T?i,. Thus, it is
immediate that an adapted 73 inequality still holds in this setting. However, equality has not been studied
in this case, and we leave this to future work, choosing to focus on the definition given in Definition 2.4

in the present paper.

Remark 2.6. For discrete-time processes taking values in some Polish space F with n time steps, one can
also consider their laws, which are probability measures on E™, and define an adapted optimal transport
problem analogously to Definition 2.4. In this setting, [Par26, Corollary 1.8] shows that the 77 inequality
is equivalent to its adapted counterpart. Moreover, [Par26, Corollary 1.9] shows that, for probability
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measures with finite exponential moment, an adapted 7, inequality holds for all p > 1, with constant
given explicitly in terms of the exponential moment and number of time steps, thus extending the results
of [BV05] to the adapted setting. For a standard Gaussian on R™, [BBLZ17, Proposition 5.10] prove an
adapted 73 inequality using a dynamic programming argument. As noted in [BBLZ17, Remark 5.11],

equality cannot generally be expected in the discrete-time setting.

2.2. Step-2 Carnot groups. Let G be a step-2 Carnot group, i.e. a connected, simply connected nilpo-
tent Lie group whose Lie algebra g of left-invariant vector fields has dimension m = d; + dy and admits a
stratification g = V1 @ Vo with Vo = [V1, V1], V1, V2] = {0}. Fix an adapted basis (V1,...,V,,) such that
(Vi,...,Vq,) is a basis of V. Using exponential coordinates, we can and will identify G with R™,

GCox= (1, - yTdy, Tdy+1y---Tm) = (m(l),x@)) e R g R% >~ R™,
with group law in Baker—Campbell-Hausdorff form,

1

(2.5) (a:,y)»—>:r,y:m+y+§[m,y].
Tt is not restrictive to assume that V;(0) = e;, the canonical basis vectors of R™. For ¢ € G, let £5,: G — G
denote the left multiplication map defined by (py = xy, for y € G, and let d¢,: TG — TG denote its
differential. By left invariance, V;(x) = dlge;, i =1,...,m, € G.

Endow g with a left-invariant metric (-,-): g x g — R that makes the V; orthonormal. Define the struc-
ture constants w;; € R%, for 4,7 € {1,...,d1}, by wfj =(V;,V;], V&) = —wé?i, for k € {d1+1,...,m}; cf.
[BLUO7, Section 3.2]. The group law in (2.5) can then be written as

1 1 1) (1
(@,y) = (=D, 2®), (yV,y?)) = @y = (fc(” AN DI C R )))-
i<j
For notational brevity, we introduce the operator W: R4 %41 — R% given in terms of the structure

constants by

d1 dl
1
WA = E UJUA” = 5 E wij(Aij — Aji) = E UJZ](AU — Aji), Ae Rd1xdr,
i,j=1 i,j=1 i<j

With this definition, we can rewrite the group law for = (z(1,z(?)), y = (y), y?) as
2y — (xu) Ly, 2@ 4@ %W(:Al) 2 y<1>)),

Let Ag = % Z?;l V.2 denote the sub-Laplacian on G and define the horizontal gradient Vg by its action

dy
Vof =Y (Vif)Vi€Vy, for f:G—R.

i=1
Let HG C TG be the horizontal tangent bundle of the group G, i.e. the left-invariant sub-bundle of
the tangent bundle T'G such that HeG = {V(0) : V € V; }, where e is the identity element of G. For
i € {1,2}, define the projection operator m;: G — R% by

(2.6) mi(x®, 23 = 2@,
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Dilation on G by a factor s > 0 takes the form

(2.7) 5s((zM, 2@)) = (s2M | 223,

The Haar measure on G coincides with Lebesgue measure L™ on R™. For measurable £ C R™, we have
(2.8) LM(6,E) = s9L™(E),

where QQ = dy + 2ds is called the homogeneous dimension of G.

We endow G with the Carnot—Carathéodory structure induced by HG, as follows. An absolutely
continuous curve ~: [0,1] — G is called horizontal if 4, € H.,G for almost every ¢t € [0,1]. The Carnot-
Carathéodory distance between x,y € G is then defined as

1
(2.9) doc(z,y) = inf{ / |9¢| d¢ : v horizontal, vo = 2,71 = y },
0

where |- | = /(- ).

We remark that horizontal paths necessarily satisfy, for almost every t € [0, 1],

(2.10) ZV Ve) (Y, Vi ZV Ye)hi,

and hence are in one-to-one correspondence with absolutely continuous h € AC([0, 1],R%). We have that

h = w1y for the first-level projection m; from (2.6).

Definition 2.7 (Canonical lift). The canonical lift ¥: AC([0,1],R%) — C([0, 1], G) is defined by ¥(h) =
7, where v € C([0,1],G) and h € AC([0, 1],R%) are related by (2.10). Explicitly, we have

A =y, A = Zwuh’h] “W(h; @ hy), fort e [0,1].

By the Chow—Rashevskii theorem, dcc is in fact a distance, which is also left-invariant and homoge-
neous with respect to the dilations defined in (2.7). The metric space (G, dcc) is a Polish and geodesic
space (see, e.g. [AS20, Section 2.4]). We let |- |g denote the norm induced by dcc on G. One can also
equip G with the gauge distance dg defined by

dy(z,y) = @y~ a) V| + [y 2) @2,

for z,y € G. All homogeneous norms on G are equivalent. In particular, there exists a constant x € (0, 00)
such that

1
(211) ~dg(2,y) < dec(,y) < Rdg(z,y);
see, e.g. [BLUO7, Proposition 5.1.4].

Remark 2.8 (Metric derivative). The metric derivative of a curve v: [0,1] — G at t € [0, 1] is defined
by

. i doc(¥(s), (1))

Feldoe = ll_{% T st
If v is absolutely continuous, the metric derivative exists for almost every ¢ € [0,1], and [$¢|daee = |¥¢l;

ldoe < m for

all m € L1(]0,1]) with doc(v( ) < f r)dr, 0 < s <t <1;see [AGS08, Theorem 1.1.2].

see [Mon01, Theorem 1.3.5]. Moreover, the metric derivative is minimal in the sense that |
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(a3

Remark 2.9 (Free step-2 Carnot groups). The free step-2 nilpotent case G = F:2 amounts to G
R4 @ s0(dy) (after identifying the exterior algebra AR with so(d;)). The space so(d;) is spanned by
{ep):1<i<j<di}, whereepj = 1(e;®e; —e;®e;), and has dimension dj = di(dy—1)/2. Writing

the bracket as [e;, e;] = e[; ;], the structure constants wz[?’(ﬂ reduce to Kronecker symbols.

All other step-2 Carnot groups can be seen as quotient groups of the free group, captured by ds < d5
and the structure constants. For instance, the (2n + 1)-dimensional Heisenberg group H® = R?" @ R
has di = 2n, dy =1, and w19 = w34 = -+ = Wap—_1,2, = 1 (flip sign upon interchanging indices, zero
otherwise). For d; = 2, we recover the familiar example H = H! =2 F22, Letting (x,y, 2) € H denote a

canonical element of H, the left-invariant vector fields are given by

V1:3x+%y3z, %:ayfézam Vi = [V1, Vo] = 0..

Remark 2.10 (Heisenberg-type groups). A special class of step-2 Carnot groups is the class of Heisenberg-
type groups, or H-type groups for short, which enjoy additional properties. Most importantly for us,
Talagrand inequalities are known to hold on H-type groups; see Section 5.3. We refer the interested
reader to [BLUO7, Chapter 18].

A step-2 Carnot group G = R% @ R® is an H-type group if, for each z € R%, there exists a linear map
Jo(2): R%t — R such that

Jo(2)* = —|z*id and (W(z®y), 2)qay = Jo(2)z,y)par  V,y € R,

~

Note that, necessarily, d; € 2N and dy < d1/2. As the name suggests, the Heisenberg group H" 2
R?2" @ R is the canonical example of an H-type group, where the map Jyn : R?® — R?" is given by

0 —zI,
JHn (Z) = <ZI 0 ) , S R.

Brownian motion on G. Let B = (Bt):e[o,1] be a di-dimensional Brownian motion on a filtered probability
space (Q,F, (Fi)i>0,P). We define the Brownian motion B on G as the continuous G-valued Markov
process with generator Ag, that is obtained by solving the SDE

dy
(2.12) dB,; =Y V'(B,)dB],

i=1
more explicitly written as

dB{" = dB,, dB® = %W(Bt ® dBy).

Note that, since B = (Bj, ..., Bqg,) is a standard Brownian motion, there is no difference between It6
and Stratonovich integration here.

The Brownian motion B takes values in the space
QG = C()([O, 1], G)

of continuous G-valued paths started from the origin. We write p = Law(B) and p = Law(B), and
p: = Law(By), ur = Law(B;), for t > 0. For a path w € Qg, let ws: = w;'w;, s < ¢, denote its

increments.
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We equip the space Qg with the uniform topology induced by the metric d., defined by

(2.13) doo(w,w) == sup dec(w, Wy).
t€(0,1]

Note that (g, dw) is a Polish space.

By Hormander’s theorem, Ag is a hypoelliptic operator, and so the associated heat kernel p: (0, 00) x
G — (0,00) is smooth [Hor67, Koh73, Haill, BB15]. Note that, for all ¢ > 0, the density of . is
pi: G — (0,00). We also define the heat semigroup P; = e‘2¢ for t > 0, by

(2.14) Pof(z) = /G faypu(y) dy = /G f@)m(y'e)dy, z €0,

for any f € L'(uy), with Py equal to the identity operator.

Shifting G-valued paths. Let ACq([0, 1],R?) denote the space of absolutely continuous curves started from
the origin, and recall the canonical lift ¥: ACq([0, 1],R%) — Qg from Definition 2.7. Since (G,dcc) is
a geodesic space, the following approximation lemma is immediate (cf. [FV10, Lemma 5.19, Theorem
7.32)).

Lemma 2.11 (Geodesic approximations). Every continuous G-valued path w on [0,T] is the uniform
limit of absolutely continuous horizontal curves; i.e. w™ = W(w"), with w™ € ACy([0,1],R%) and ¥
defined in Definition 2.7.

We now extend the canonical lift to a lift map on the space Q = C([0, 1],R%) of continuous curves
started from the origin. Note that the geodesic approximation of w = (w®,w®) from Lemma 2.11
depends on both w® and w(®. Thus we also introduce an approximation based only on w) in order
to extend the canonical lift. For a continuous path w € 2, let & € ACq ([0, 1],R%) denote the piecewise-
linear approximation of w on the dyadic grid (k27")xeqo,...,27}, for n € N, and note that &" — w with

respect to the uniform topology on .

Definition 2.12. (Lift) Extend the canonical lift ¥: AC([0, 1],R%) — g to the lift map ¥: Q — Qg
by

mn

lim W(w™), if the limit exists,
(2.15) U(w) = oo TE")
0, otherwise,

for w € Q. Define the domain of ¥ as Dom(¥) :={w € Q : lim,, o U (W") exists } C Q.

The following statement holds by a minor modification to the proof of [FV10, Corollary 13.19] in the

general step-2 Carnot setting.

Proposition 2.13. Let B be a di-dimensional Brownian motion. Then B as defined in (2.12) satisfies
B = U(B) = lim,_o U(B") almost surely. In particular, it follows that p(Dom(¥)) = 1.

Having defined the lift ¥ for general curves w € Cy([0,1],R%), we can now formulate the following
lemma relating absolutely continuous measures v < p on 2g with absolutely continuous measures v < p

on .

Lemma 2.14. Let v be a Borel probability measure on . Then v < p if and only if there exists a
Borel probability measure v on Q such that v < p and v = Vyv.
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Proof. First suppose that there exists v < p with v = Wyv. Then, for any Borel A C Q¢ with p(A4) =0,
we have that u(¥=1(A4)) = pu(A) =0, and so

v(A) = v(T~1(4)) = 0.

Now suppose that v < pu. Let p = g—z and define the measure v via Z—Z = po ¥ so that v < u. By

Proposition 2.13, (22 \ ¥(2)) = 0 and p = V. Therefore

) = [ puuie) = [

o Pl = [ plwintaw) =1,

Qe
and so v is a probability measure on §2. Moreover, for any Borel measurable A C Qg,
v() = [ pmldo) = [ pu@)ae) = [ vl =pw i)
A T-1(A) T-1(A)

Hence v = Uyv. O

We show that the following shift map is well defined in Proposition 2.16 below.

Definition 2.15. (Shift map) For h € ACq([0,1],R%) define the shift map T},: Q¢ — Qg by

(2.16) Thw = lim U(w" +h), w € Ng,

n— oo

where (w™)nen denotes the geodesic approximation from Lemma 2.11.

Proposition 2.16. The shift map defined in Definition 2.15 satisfies the following:

(i) For h € H, the shift map Ty, is well defined.
(i) For X = (XM, X®?) € Q¢ and h € H the shift map T, X is explicitly given by

GX)D = XD b, (X)) = XD 4 W (X X))
where
ax! = XV @ dh, dX2=hodXY, dX3 =h, @ dh,.
(ii7) If X is given by X = U(X) for X € Dom(¥V), then, for h € H,

(2.17) T X =T, U(X)=U(X +h).

(iv) The map ACy([0,1],R%) x Qg — Qg, (h, X) = T, X is continuous.

Proof. If X = ¥(X) is an absolutely continuous horizontal curve, we have T, X = U(X + h), for
h € H. Then (ii) follows by definition of the lift on ACg([0,1],R%). The representation of (ii), with
cross integrals in X!, X2, remains meaningful when X is only continuous, by basic properties of Riemann—
Stieltjes integration. By continuity properties of Riemann—Stieltjes integration, we obtain that the limit
in (2.16) exists, so that (i) and (ii) follow.

Now let X € Dom(¥), so that X = W(X) = lim,_,. ¥(X") for the piecewise linear approximation
(X™). Let h € H. Then X = lim,, 0o X" and X® = lim, .o 2WX", where dX{"™ = X7 @ dX].
By the definition of ¥ on ACq([0,1],R%), we have that

~ ~ 1
(X" 4 h) = (X” -y SWOT X X x?))7
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with X1, X2" defined as in (ii) with X replaced by X", and X3 defined as in (ii). By continuity of the
Riemann-Stieltjes integral and (ii), we deduce that lim,_, \Il()/(:” + h) =T,V (X). This proves (iii).
Finally, (iv) also follows from continuity properties of the Riemann—Stieltjes integral and the repre-

sentation from (ii). O

Remark 2.17. As is plain from Proposition 2.16, part (ii), we can translate any X = (X(l), X)) e Qg
in the direction of any absolutely continuous h. The situation is more complicated when dealing with
Carnot groups of level strictly greater than 2, cf. [FV10, Section 9.4.6], or when h has less regularity, as
is the case for Cameron-Martin paths of fractional Brownian motion with Hurst parameter H < 1/2; cf.
Section 4. In these cases, one has to incorporate suitable p-variation or Holder rough path regularity on

the path space of X.

Remark 2.18. For any h € H and X € g, manipulating the expression for 73, X from Proposition 2.16
gives X;tl(ThX)s,t = (ZSQ, Zg?t)), for s,t € [0,1], s < t, where

1
Z;}t) = hs,tv Z;t) = 5 (x;t + X?,t + ngt + 2Xt ® hs - (Xs 02y hs + Xt X ht + hs & ht))

Also define h = ¥(h). Then, after integrating by parts, we find that, for any s,¢ € [0, 1] with s < ¢,

)

t
Ous = W1 X (DX = (0. [ Whe, 94X,).

The increments 6, ; can be interpreted as an error of non-commutativity between the increments of the
shifted path T, X and the increments of the (right-)translation Xh by the lifted path h.

We now use the shift map to define a cost function on Q.
Definition 2.19. Define a cost function Cy: Qg x Qg — [0, 0] by

h||ln, ifY =T,X, for some h € H,
(2.18) Cn(X,Y) = Il "
400, otherwise.

Lemma 2.20. The cost Cy: Qs X Qs — [0, 00] is lower semicontinuous.

Proof. Let X,Y € Q¢ and let (X™),(Y"™) C Q¢ be sequences such that (X", Y") — (X,Y). We may
assume that there exists a subsequence ny — oo such that Y™ = Ty, X™, where A" = mY ™ —
mX™ € H, and liminf, . Ox (X", Y"™) = limg_ oo C (X", Y™ ) =: I < co. Then we have that

k—o0 k—o0
where h = mY — m X € H. By the continuity of the shift shown in Proposition 2.16 (iv), Y = T X,

and so Oy (X,Y) = ||h]|n- O

2.3. Discussion on the choice of the cost function Cy. The choice of cost function C is natural
in the sense that it arises as the I'-limit of the sequence C,,, as shown in Section 6.4. Moreover, Cy has
the crucial property that whenever H(v|pn) = +oo, also T¢,, 2(p,v) = +00. Indeed, supposing that
Te,, 2(p, V) < 00, there exists a coupling A € II(u, v) such that

A{(w, @) eQe xQg: w=Tg_,w,w—weH}) =1,
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and [ C% (w,w)dA(w,w) < oo. We have that g = Wyu, by Proposition 2.13, and combining this with
(2.17) from Proposition 2.16 gives

AM{(w,w) e x NV w=Y(w),w=Y(®),wv—weH})=1

Thus there exists v € P(Q2) such that v = ¥yv. By Ito representation and Girsanov’s theorem, we also
have that v <« p. Hence v = Uy <« Uyp = p, and H(v||p) < oo.

This is in contrast to the cost function 6% =y 0(m xm): Qe x Qg — [0, 00], which appears in the
cost-information inequality in [Riel7, Corollary 1.4]. Indeed, consider the Brownian motion B = (B, A)
on the Heisenberg group G = R2 @ R. Let v = Law(X), where X = (B, X) is defined as follows. Let
M € (0,00), and define Xg = 0 and X;; = As; + (t — s)M, for all s,¢ € [0,1] with s < ¢. Since X only

differs from B in the second component, we see that
0<TL ,(nv) <E[CA(B.X)| =E[d(B,B)] = 0.

However, v is not absolutely continuous with respect to p. Indeed, supposing that v < p, Lemma 2.14
implies that ¥ = Wyv for some probability measure v < p. It follows that v(¥(Q2)) = v(Q2) = 1. On
the other hand, since v = Law(X) with X = (B,X) # U(B), we see that v(¥()) < 1, which is a
contradiction. Hence H(v||p) = +o0.

3. TALAGRAND FOR BROWNIAN MOTION ON CARNOT GROUPS — DIRECT APPROACH VIA FOLLMER
DRIFT

In this section, we give a first proof of Talagrand’s 75 inequality for the law of Brownian motion on
a step-2 Carnot group. We follow the strategy of [Lehl3] and [F6122], using Follmer’s intrinsic drift
from [F6186, F6188]. Moreover, we show that equality is attained in the 7Tz inequality when restricting to
adapted couplings, as was shown in the classical case in [Las18, Lemma 5] and [F6122, Theorem 3].

We first give a characterisation of adapted couplings on P(Q2g x Q¢). In particular, we show that our

definition of adapted couplings in Definition 2.4 is consistent with that of [F6122, Definition 1].

Lemma 3.1. Suppose that v < p. Then A € (u,v) is an adapted coupling if and only if there exists a
filtered probability space (Q,]—', (F1),Q) on which processes X, Y are defined such that X is a Brownian
motion, Y is an adapted process, and A = Law(X,Y") under Q.

Suppose that v < . Then X € II(w,v) is an adapted coupling if and only if there erists v < p and
an adapted coupling A € aq (i, v) such that A = (¥ x W)y,

Proof. Suppose that v < p. By [Lasl8, Lemma 4], our Definition 2.4 of adapted couplings is equivalent
to the symmetric counterpart of [Lasl8, Definition 1] (see [Lasl8, Section 4.1]). Then the first claim
follows from [Las18, Propositions 3 and 4].

Now suppose that ¥ < p. By Lemma 2.14, there exists v < p such that v = Wyv. If X is an Ré1-
valued process with natural filtration (F):e[o,1) completed with respect to the law of X, and X = ¥(X)
is a G-valued process with natural filtration (F¢):ep,1] completed with respect to the law of X, then
Fi = VU(F), for all t € [0,1]. Since p = Yyu and v = Vv, we have that X € IIq(u,v) if and only if
A= (¥ x U)yA for some A € Iq(p, v). O

Remark 3.2. By Lemma 3.1, if A € I,4(p, v), then there exist X = ¥(X), Y = ¥(Y) defined on some
filtered probability space (€, F, (F1),Q) such that A = Lawg(X,Y), where X is a Brownian motion on
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G and Y is an adapted G-valued process, and Lawg denotes the law under Q. Then, letting Eq denote

expectation with respect to Q, we have

/C;(w,w) d\ = Eq[C%(X,Y)].

We now prove the main result of this section, showing that p satisfies a 75 inequality, and that equality

holds when restricting to adapted couplings.

Theorem 3.3. Let v < . Then there exists v < i such that v = Wyv, and there exists a predictable
process b¥ on R? with b¥ € L?, v-almost surely, such that B = B — fo by dt is a Brownian motion under
v, and X* = Law, (¥(BY), ¥(B)) is the unique optimal adapted coupling of p and v with

3.1) Tey2(v,m)® < TE, 2(m,v)* = E,[C3((BY), U(B))] = 2H (v||p).

In particular, p € T2(Qs, Cy, 1).

Proof. By Lemma 2.14, there exists a probability measure v on Q with v <« p and Wyv = v. Writing

p= ng:’ we have tdiTl: = po V. Since u(Ns \ ¥(2)) = 0, by Proposition 2.13, we obtain that

H(v|pw) = A o P ox(p(e) dule) = / p((w)) log(p(¥ () dpu(w) = H(v|).

We can apply [F6122, Proposition 1] to obtain that there exists a predictable process b” with b € L2,
v-almost surely, such that B” = B — [, bf dt is a Brownian motion under v with

(3:2) E(IB” - Blf3,] = 2H (v||n) = 2H (v || ).

Moreover, from [F6122, Theorem 3] it follows that A* = Law, (BY, B) is the unique optimal adapted
coupling between p and v. By Lemma 3.1, A* = Law, (V(B"), ¥(B)) is an adapted coupling of g = Wypu
and v = Wyv. Thus, using the definition of Cy from (2.18),

(3.3) Tad

cH,2

(1,v)* = B[ B” = B3] = EJ[C3,(¥(B"), ¥(B))] = TE, 5k, v)*.

On the other hand, since ¢y o (m x m1) < Cy, applying Lemma 3.1 gives

Tad )2 = inf / 2/(w,@) d\w, @) = inf / A (mw, m@) d\(w, @
aerr= ot [ Ge@iws)= [ dnens) ie.s)

< inf / C?(w,w)d\(w, @
SN Y H(w,w) dA (w,w)

= T¢, 2 (1. v)*.
Hence we have optimality of A* and

T, 2 (v, 0)? = E[Crz (¥(BY), ¥(B))] = B, [| B — B3] = Ty, 2(u,v)*.

cH,2

Applying (3.2) gives (3.1), and uniqueness of the optimiser follows by Lemma 3.1. |

Remark 3.4. Suppose that h is an adapted process with h € H almost surely, and let v = Law (7}, B).
Then we can take b” = h in Theorem 3.3. Indeed, by Girsanov’s theorem, B — h is a Brownian motion
under v, and H(v||p) = H(v||p) = E, [logdrv/du] = E, [||h])3,].
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4. TALAGRAND FOR GAUSSIAN ROUGH PATHS — DIRECT APPROACH VIA CONTRACTION

We now give an alternative proof of Talagrand’s 73 inequality in a more general setting, following the
contraction approach of [Riel7].

Let Z be a d-dimensional continuous Gaussian process that admits a level 2 “rough path” lift Z = Z(w)
with Z € D almost surely, where D is a suitable p-variation (or 8-Hélder) rough path space (cf. [FV10,
Chapter 15]). We refer to [FV10, Chapter 15] for conditions under which a Gaussian process can be lifted
to a Gaussian rough path. Here we simply assume that such a lift exists. Let v € P(Q) denote the law
of the Gaussian process Z, v € P(D) the law of Z, and H, the Cameron-Martin space of Z (cf. [Jan97,
Chapter 8, Section 4]).

A 73 inequality is known to hold for general Gaussian processes with a = 1 and cost

N |hlla,, ifz—yeH,,
on, (2,y) =
+00, otherwise;
that is v € T2(Q, ¢4, , 1); see [FU04, Theorem 3.1] and [Riel7, Theorem 1.2].

We work under the following assumption.

Assumption 4.1. Suppose that there exists € C Q with V(ﬁ) = 1 such that

(i) There exists a Borel-measurable lift map W: Q — D with m ¥(z) = z, for 2 € Q, where 7 is the
projection onto the first component, such that \TI(Z ) = Z almost surely;

(ii) There exists a continuous shift map
H,xD =D, (h ) Thr,
such that

(4.1) TWV(z)=V(z+h), z€Q heH,.

Remark 4.2. By standard results [FV10, Chapter 15], we see that Assumption 4.1 is satisfied for
Z = B a fractional Brownian motion and its lift B in the step-2 Carnot group G, with path space
D = Cy v ([0,1],G), for H € (1/3,1/2], p € (1/H,3). Extensions to H > 1/4 are possible, at the price
of lifting Z to a step-3 Carnot group; we do not give details for the sake of brevity.

Definition 4.3. Define the cost 6Hu3 D x D — [0, 00], similarly to (2.18), by

~ hllz,, ifY =T,X, for some h € H,,
) G vy o |1 ,

400, otherwise,

where T}, is the shift from Assumption 4.1.

Due to the assumed continuity of the shift, we recover measurability of Cy;, (cf. Lemma 2.20). By
applying the contraction principle from Lemma 2.2, similarly to [Riel7], but for a different cost, we lift

the Talagrand inequality to the rough path space D.

Theorem 4.4. Let Assumption 4.1 hold. Then v € Ta(D, 6HV, 1).
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Proof. The property (4.1) implies that for h € H,, a path = € Q satisfies = = y + h if and only if
U(x) = Tr¥(y). Hence for z —y € H,,, we have that U(y + (z — y)) = Tm,y\i(y) and thus

lz = yll3,, = C, (¥(x), ¥(y)).

Similarly, if # — y ¢ H,,, then ¥(z) is not a shift of ¥(y) and so Cy, (¥(z), ¥(y)) = +o0. Together with
veT(ex,,1), I/(ﬁ) = 1, and measurability of 6’7{” and \Tl, an application of the contraction principle
(Lemma 2.2) with L = 1 then yields v € T3(D, Cy, , 1). O

5. TALAGRAND FOR THE HEAT KERNEL MEASURE ON CARNOT GROUPS

In this section, we show that a 73 inequality on the step-2 Carnot group G follows from a log-Sobolev
inequality, which in turn can be deduced from a heat semigroup estimate. In particular, we prove a 7T
inequality for the heat kernel measure p; in the case that G is an H-type group. We will apply this result
in Section 6 to show that a 75 inequality also holds on the path space by a bottom-up approach.

5.1. From log-Sobolev to Talagrand. We follow the approach put forward by Otto—Villani [OV00],
namely deducing a 7> inequality as a consequence of a log-Sobolev inequality. We will make use of
the generalisation by Gigli-Ledoux [GL13] of Otto—Villani’s result. Whereas the result of Gigli-Ledoux
[GL13] depends on the log-Sobolev inequality for Lipschitz test functions, we show via a mollification
argument that this can be relaxed to only requiring the log-Sobolev inequality for smooth test functions;
see Theorem 5.1. Moreover, for the heat kernel measure, we show that the log-Sobolev inequality for
smooth test functions follows from certain heat semigroup estimates; see Theorem 5.2. In the special case
of H-type groups, as defined in Remark 2.10, the required heat semigroup estimates are known. Thus, in
Theorem 5.3, we show that a 73 inequality holds for the heat kernel measure on H-type groups and, in
particular, on the Heisenberg group.

Let G be a step-2 Carnot group. Recall that, for the Carnot—Carathéodory metric dgc defined in
(2.9), the space (G, dcc) is a Polish space. Hence, for any Borel probability measure 1 on G, the space
(G,dcc,m) is a metric measure space in the sense of [GL13].

For a locally Lipschitz function f: G — R, define the local Lipschitz constant Lipg(f) by

Lipg () (z) = lim sup W

By an extension of Rademacher’s theorem due to Pansu [Pan89] (see also [DPMM ™25, PS17], and [LD25,
Theorem 11.3.2]), we obtain that every Lipschitz continuous function f: U C G — R is Pansu differen-

x € G.

tiable Lebesgue-almost everywhere. In particular, its gradient Vg f exists £™-almost everywhere and
Lipg(f)(x) = |Ve f(x)|s, for L-almost every x € G.

We say that a Borel probability measure n on G with n < L™ satisfies the log-Sobolev inequality if
there exists o € (0, 00) such that

2
(LSI) 2a/ flog fdn < / Mdm for all f € C°(G, [0700)),/ fdnp=1.
G {r>o0} G

We first show that (LSI) implies a 73 inequality. As an intermediate step, we show that the log-Sobolev
inequality also holds for Lipschitz functions, so that we can then apply [GL13, Theorem 5.2].
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Theorem 5.1. Suppose that n is a Borel probability measure on G with m < L™ satisfying (LSI) for
some a € (0,00). Then, for any Lipschitz function f: G — [0, 00) with fG fdn=1,

IR
(5.1) Qa/Gflogfdn < /{f>0} — dn.

Moreover, n € T2(G,dcc, @).

Proof. We argue as in the proof of [AS20, Theorem 4.8] via mollification. Consider f: G — [0,00)
Lipschitz continuous with fG fdn = 1. In particular, its gradient Vg f exists £™-almost everywhere.

Let p: G — R be a symmetric smooth mollifier in G, i.e. a function p € C*(R™,[0,00)) such that
suppp C B1, 0 < p < 1, p(x~!) = p(x), for all ¢ € G, and [;pde = 1. For k € N and € G, set
pr(x) = k9p(S,x) and define the mollification Fu = pr* f by

Fulx) = (pk*f)(w)=/ka(wy‘l)f(y)dyZ/ka(y)f(y‘lw)dy, z €G.

For each k € N, also define a smooth truncation function x, € C°(R™, [0, 1]) such that x; = 1 in By,
xt = 0in BS,, and |Vexi|e < C/k for some constant C € (0, 00), and define fj, := ﬁch.
Thus, f € C>(G,[0,00)), for each k € N. Moreover, fi — f in L'(n) and thus n-almost everywhere

along a subsequence. By Fatou’s lemma, we have that
liminf/ frlog fr,dn > / flog fdn.

We next show an upper estimate for the limsup of the right-hand side in (5.1) with fk in place of f.

Note that, by left-invariance of the Carnot—Caratheodory distance, for &1, s € G, we have

[Fil@1) = filwa)| _ /pk(y)|f<y-1w1>—f<y-lml> iy < /pk(y)my-lwl)—f(y-1w1>| a
G G

deo(®r,x2)  — dec(xy, x2) dec(y=tzr, y~lzg)

Thus, after passing to the lim sup for ; — x5 = @, we obtain LipGﬁ(w) < prxLipg f (), or equivalently
|Vgﬁ\e(:c) < pr* Ve fls(x). With this estimate, the Cauchy—Schwarz inequality gives

Ve fild < [Pk * (X{f>0}\/?|v\(;§6>r < fx (Pk* V(}f'éX{po})-

Multiplying fr by the truncation xj; and applying the product rule, we estimate

Vo fil2 Vo frl2
lim sup / [Vefils dn < limsup / % dn
k—oo J{fa>0y Sk koo J{f>0}  fr

. Ve f|? Vo f|?
< hmsup/ pi * <| Gf|GX{f>0}) dn S/ Nelle oy
k—oo JG f {f>0} f

Finally, define I, := [ fx dn and the normalised function fr = fx/Ik, for each k € N. Then, by (LSI),

2a/fklogfkdn:2aIk/ﬁlogﬁdn+2aIklogIk
G G

Vo frlg
fr

2
< fk/~ der?alkloglk =/ dn + 2al; log I,.
{fx>0} {fx>0}

Ji
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We conclude that
2a/f10gfdn§hminf2a/fklogfkdnglimsup/ IVG'fk|(23‘dn</ Mdn.
G k—00 G koo J{f>0)  Jr >0y [
Thus, the log-Sobolev inequality for Lipschitz-continuous functions is established.
Finally, since (G,dcc,m) is a metric measure space in the sense of [GL13], we conclude that n €
T2(G, dcc, @) by [GL13, Theorem 5.2]. O

5.2. From heat semigroup estimates to Talagrand. We now specialise to the case of the heat kernel
measure g1 and give a sufficient condition for p; € T2(G, dcc, @), for some a € (0, 00).
As noted in [Eld10, Section 5] and [BBBCO08, Remark 6.6], one can deduce the log-Sobolev inequality

(LSI) for pq from the following heat semigroup estimate: there exists a constant K € (0, 00) such that
(52) |VGPtf|G < KPt(|va‘G), for all f € CSO(G, R), t>0,

where P, is the heat semigroup defined in (2.14). Indeed, for the Heisenberg group G = H = H!, [Li06,
Théoréme 1.1] proves the estimate (5.2), and [Li06, Corollaire 1.2] states that (LSI) holds as a direct
consequence, following the arguments in [ABCT00, Théoréme 5.4.7]. More generally, for G = H", [HZ10,
Theorem 7.3] and [BBBCO08, Theorem 6.1] prove that (LSI) holds, again relying on the heat semigroup
estimate (5.2). For completeness, we provide a proof in Theorem 5.2 that, for any step-2 Carnot group,
the heat semigroup estimate (5.2) implies the log-Sobolev inequality (LSI). Thanks to Theorem 5.1, the
T2 inequality also follows.

Theorem 5.2. Let G be a step-2 Carnot group and suppose that there exists K € (0,00) such that
the heat semigroup P on G satisfies the estimate (5.2) for all t € [0,1]. Let a = ﬁ Then the heat
kernel measure py on G satisfies the log-Sobolev inequality (LSI) with constant a, and w1 satisfies the Ty
inequality py € T2(G,dcc, «).

Proof. Suppose that P; satisfies (5.2) for all ¢ € [0,1]. Let ¢ € C*(I,R) for some interval I C R, and
suppose moreover that ¢” > 0 and the function —1/¢” is convex. Let f € C°(G,R) and let ¢ € [0, 1].
Then, by the heat equation and chain rule for the sub-Laplacian, for any s € [0, ¢],
asps(b(Ptfsf) =P (AG(ZS(Ptfsf) - (ZS/(Ptfsf)AGPtfsf)
=P (¢H<Ptfsf)|vGPtfsf|é)'

The heat semigroup estimate (5.2) and the Cauchy—Schwarz inequality imply that

VePr-ufit € K2(Piu(Voflo)) = K2 (Pies( Ve floaV/& (D - VF(D))
< K2P_ (Vo /R (1) P (1/6"(1)),

and, by Jensen’s inequality,

-1 1
< = .
T P (=1/0"(f))  Bi-s(1/0"(f))

¢H (Ptfsf)
Hence

0sPut(Piesf) = Pu(¢"(Pi—sf)| Vo P f1)
< K*PPo([Veflge" (f) = K*Pi(|Ve flge" (),
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and integrating gives

t
Pio(f) - d(Pf) = /0 0. P,(Pry f)ds < K2P,([Ve 26" (f)).

Now take ¢: (0,00) — R to be ¢(z) = zlogz for all € (0,00), and suppose that f: G — (0, c0).
Then we have the following form of the log-Sobolev inequality:
Ve /I3

7
To arrive at (LSI), we set t = 1, evaluate both sides of the inequality at the identity, and additionally
suppose that [ fdu; = 1. Then

Py(flog f) — Piflog(P.f) < K*tP,

v 2
/Gflogfdm SKZ/G'GJdem.

Note that, allowing f: G — [0,00), we have [ flog fdu; = f{f>0} flog fdpy. Thus (LSI) holds with
constant o = 7.

Applying Theorem 5.1, we further have that g1 € 72(G, dcc, @). O
5.3. Talagrand on Heisenberg-type groups. For any H-type group G, [Eld10, Theorem 2.4] proves

that the heat semigroup estimate (5.2) is satisfied. We thus have the following corollary of Theorem 5.2.

Theorem 5.3. Let G be an H-type group. Then there exists a > 0 such that the heat kernel measure
w1 on G satisfies the log-Sobolev inequality (LSI) with constant «, and py satisfies the Ty inequality
p1 € T2(H, dcc, @).

Proof. By [Eld10, Theorem 2.4], the estimate (5.2) holds on G with some constant K. Thus the result

follows from Theorem 5.2 with oo = ﬁ O

We remark that the best possible constant in Theorem 5.3 is o < 1/2, since [Eld10, Proposition 4.1]
shows that the optimal constant in (5.2) satisfies K > /30115

3d;+1°

In Section 5, we discussed the availability of Talagrand transportation inequalities on Carnot groups,
as a consequence of log-Sobolev inequalities and heat kernel estimates. In this section, we demonstrate
that we can transfer the 7T inequality for the heat kernel measure on a Carnot group, via a rescaling and
tensorisation argument, to a 73 inequality on the associated path space; see Section 6.1. We highlight
that this approach yields interesting insights into optimal transport problems in the non-commutative
sub-Riemannian setting that distinguishes it from the Euclidean case; see Sections 6.2 and 6.3. Finally, we
show that the cost function defined in (2.18) on the path space arises naturally as the I'-limit of discretised
cost functions based on the Carnot—Caratheodory distance on the Carnot group; see Section 6.4.

Throughout this section, let G = R% @ R% be a step-2 Carnot group and set d = d;; see Section 2.2.
Recall that B denotes Brownian motion on G, with law p = Law(B) and time marginals p; = Law(B;)
for t € [0,1].

6.1. From Talagrand on Carnot groups to Talagrand on path space. The main result of this
section is that the 73 inequality for gy on the group G implies the 75 inequality for p on the space Qg

of continuous G-valued paths started from the origin.
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We first show that the heat kernel measure satisfies the following scaling property.

Lemma 6.1. Suppose that p1 € T2(G,dcce, @), for some a € (0,00). Then, for any t € (0,1], ps €
T2(G, doc, at ™).

Proof. We claim that the heat kernel measure on G satisfies the scaling

(61) Mt = (58—1)ﬁp’s2t7

for any s > 0, t € [0,1]. To see this, recall that p: (0,00) x G — (0,00) denotes the heat kernel
on G, @ the homogeneous dimension of G, and L™ the Lebesgue measure on G. Then, as in (2.8),
(6s)sL™(dx) = s~9L™(dx), for any s > 0. Moreover, by [AS20, Theorem 2.3], for any s > 0, ¢ € [0,1],
and x € G, we have that p, () = s~ 9p;(x). Therefore, for any Borel set A C G,

je(4) = /A pi(@)Cm (dz) = 2 /A (9o © 6.) ()L™ (dx)
= 50 / oo ()(6,)p L™ () = / Boon ()L™ (d) = (8,1 )gpans(A).
5.-1(A) 5.-1(A)

This proves the claim. Now fix ¢ € (0,1]. Setting s = ¢~2 in (6.1), we have p; = (67)sp1. The map
071 G — G is L-Lipschitz with Lipschitz constant L = Vt. Thus, since p; € T2(G, dcc, @), Lemma 2.2
implies that p; € T2(G, dcc, at™1). O

We now consider the product space G2 =G x - -- x G, for some n € N, and apply the dimension-free
tensorisation property of the T3 inequality. Define doc,n: G x G2 — [0,00) by
on

d%c,n(f&f) = 2" Z d%c (wi7 Ei)a
i=1

for & = (z1,...,2¢,), T = (%y,...,%,) € G>'. We have the following tensorisation result.

Proposition 6.2. Suppose that p1 € T2(G,dcc, ), for some a € (0,00). Then, for any n € N,
p52, € T2(G*" doc, @)

Proof. Fix n € N. First note that ps-» € T2(G, dcc, a2™), by Lemma 6.1. Define JCC,n: G?" — [0,00)
by

on
d%c,n(wa E) = Z dQCC (wiv fi)a
=1

for & = (x1,...,2,), T = (F1,...,%,) € G*". Since (G,dcc) is a Polish space, [GLO7, Theorem 6] im-
plies that 72(G, dcc, @2™) has the dimension-free tensorisation property; i.e. ugg’_Z: € E(GQn',Jcc,n, a2™).
Applying Lemma 2.2 with 1) equal to the identity, we conclude that ;L;@E: € T2(G?", dcc o, a). O

We next prove a relative entropy bound for measures on the path space. For n € N, set t} = k27"
for k € {0,...,2"}, and define I'™: Qg — G?" to be the projection of paths to their dyadic increments;
iLe. IMw = (woim,wir im,. .. 7‘*’tgn,1,1)a for w € Q. Then define a cost function C),: Qg x Qg — [0, 00)
by

(6.2) Cn(w7w) = dcc’n(l—‘nw, an)7 w,w € Qg.
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Lemma 6.3. Suppose that py € T2(G,dcc, @), for some a € (0,00), and let v be a Borel probability
measure on Qg. Define p" =T'fp, v" =T{v € P(G?"). Then H(w"||u") / H(v||pm) as n — oo and,
for anyn € N,
2
Te,2(pmv) </ - H@|pw);
i.e. € T2(Qg, Cp, ).
Proof. By independence and stationarity of the increments of B, we have that p" = I'f'p = u?}n and
thus, by Proposition 6.2, u™ € T3(G?", doc n, ).
As shown in [DGW04, Lemma 2.1],

(6.3) H(v"|w") = inf { H(nlp) : n € P(Q), Tyn = v" |,

and we see that the right-hand side is increasing in n and bounded above by H(v||p). To see that the
limit is equal to H(v||p), we introduce the piecewise linear interpolation map R™: G** — Qg, which is
defined such that I'" o R™ = id, and the image Im(R"™) C Qg is the set of paths that are linear except
at the dyadics ¢, k € {0,...,2"}. Define p" = R ", v" = Rjv" € P(Qs). Since R": G*" — Im(R")
is a bijection, applying the representation given in (6.3) for both R™ and its inverse gives the equality
H(v™||pu™) = H@"||p™). We conclude similarly to [AGS08, Corollary 9.4.6], as follows. For any w € Qg,
we have that R" oI (w) — w as n — oo and so, by dominated convergence, " — p and v — v. Then,
using the joint lower semicontinuity of the relative entropy (see, e.g. [AGS08, Lemma 9.4.3]) together
with the upper bound implied by (6.3), we conclude that

Jim H(p"[|p") = lim H@"||p") = H(v|p).
Finally, for any n € N, pu" € E(Gzn,dccyn,a) implies that
T2, 2(v) = Tho o™ 0") < ZH@ ) < 2H(|p). 0

Before turning to the main result of this section, we prove an auxiliary lemma on the Euclidean cost
on R? and the associated Cameron—Martin cost cy defined in (2.1). For n € N, define ¢,,: 2 x Q — [0, o0)
by

277/
(6.4) cp (w,w) = 2" Z @i an —wen ],
k=1

for w,w € Q. Part (ii) of the following lemma is a standard stability result from optimal transport and

is a consequence, for example, of [Riel7, Lemma 1.1]. Part (iii) will also be used in Proposition 6.21.

Lemma 6.4.

(i) For each (w,w) € Q x Q, (¢n(w,))nen @S an increasing sequence, and
(6.5) lim ¢, (w, @) = ey (w,@).
n— oo

(ii) For any v € P(Q), the following convergence holds along a subsequence:

(6.6) B Te, o) = Ter 21, v).
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(i1i) For any (w,w) € Qs x Qg and n € N,

(6.7) Cp(w,w) > cp(mw, mw).

Remark 6.5. We will show in Theorem 6.6, that the convergence in (6.6) and the lower bound in
(6.7) imply the lower estimate liminf,,_,o T, 2(pt,v) > Ty, 2(p, V). An even stronger result will be
derived in Section 6.4, namely, we prove the I'-convergence of the cost functions C), to the cost C'y;. This
establishes that C% is indeed the natural limiting cost. Moreover, we prove that the I'-convergence of
C', implies the convergence of the associated transport problems T¢, 2(p, v™) along a suitable sequence

of probability measures " € P(Qg).

Proof. Let w,w € Q and write h = W—w. The sequence (¢, (w,w))nen is increasing by definition. Suppose
that h € H. Then

2n 1
i € (w,0) = lim 273 el = / el dt = 1.
k=1

For h ¢ H, the above limit is +o0o0. This proves part (i).
For part (ii), note that T, o(u,v) and T, 2(p, ) admit minimisers, for each n € N, by e.g. [Vil09,
Theorem 4.1], since the cost functions are lower semicontinuous and non-negative. Let A\* € II(u,v)

attain the infimum in T¢,, 2(u, v). Then, by the monotone convergence theorem,

limsup T2 ,(p,v) < lim sup/ 2 (w, @) d\* (w,@) = / 3 (w, @) AN (w, ) = TfH 5, v).
’ axQ QxQ ’

n—oo n—oo

On the other hand, for each n € N, let A\ € II(p, v) attain the infimum in T, o(p,v). Since I(u,v) is
tight, Prohorov’s theorem implies that (A"),cn converges weakly along a subsequence (ny)ren to some

M€ II(, v). By monotonicity, for any m € N,

liminf T2 ,(p,v) = lim inf/ 2 (w,w)d\"* (w,w) > lim inf/ 2 (w, @) A\ (w, )
k—oo Tk’ axe QxQ

k—o0 k—o0
:/ A (w, @) dA(w, ).
QxQ
Applying monotone convergence once more,
minf T2 () > lim 2 (w,7) dA(w, D) = / 2, (w,5) AN (w, @)
k—oo TR m—=o0 Jox0 axQ

Z T?’;'H,Q(/'LJ V)‘

Now observe that, for @, T € G, dec(x,®) > |max — mZ|. Indeed, by definition of the Carnot—

Carathéodory metric,
1
dec(z, @) = min{ / |9¢| dt : v: [0,1] — G horizontal, 7o = &, 71 = E}
0
1
> inf{ / |%¢| dt : v: [0,1] — G horizontal, m1vy = m @, T171 = mf}
0

1
= min{ / |g¢| dt : g: [0,1] — R? absolutely continuous, gy = 7, g1 = wlf}
0

= |’/T1£13 —7'('15‘.
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Hence, for w,w € Qg,
2n 2n
Cﬁ(w,w) =27 Z d%C (wtgiptg,wtgivtg) > 2" Z |7letg717t}z — MiWir g I2 = ci(mw, 7'('15).
k=1 k=1
This concludes part (iii). O
We are now in position to prove the main result of this section.

Theorem 6.6. Let G be a step-2 Carnot group and suppose that py € T2(G, dec, @), for some o € (0, 00).
Then p € T2(Qs, Cy, ).

Proof. Tf v is not absolutely continuous with respect to w, then H(v||u) = +o0o and the cost-information
inequality holds trivially.

Now suppose that v < p. Recall the lift map ¥: C([0,1],RY) — C([0,1],G) given by (2.15). By
Proposition 2.13, p = W¥yu, and by Lemma 2.14, there exists v < p such that v = Uyv. Now let
A* € II(p, v) be such that

T2 (. v) = / &, (w,0) AN (w, @) = / @ — w3, dX* (w, D).
QxN QxN

We have that \*({ (w,@) € QxQ:w—w € H}) =1 and that A = (U x U)yA* € II(p, v) is an admissible
coupling. Using the property (2.17) of the lift and shift from Proposition 2.16, we find that

/ C2 (w0, @) dAw,@) = | CL(W(w), U(@E)) dN (w,)
Qs XN QxN

_ / C2,(W(w), To oy U(w)) AN (w, @)
QxQ

- /Q 15 =l AN () = T2, 550
X

Hence TZ, ,(p,v) < Tz, o(p,v).
Combining (6.6) and (6.7) from Lemma 6.4, we have

limsup T% ,(p.v) = lmsup T2, ,(p,v) = T2, o(u,v) = T2, H(p.v).

n—oo n—oo

By Lemma 6.3, we conclude that T%H,z(“v v) < 2H(v||p). O

Theorem 6.7. Let G be an H-type group. Then the measure p on the space Qg = Cy([0,1],G) satisfies
the cost-information inequality
[IAS B(QGW CH7 Oé),

for a >0 as in Theorem 5.3.

Proof. By Theorem 5.3, p1 € T2(G, dcc, ). We conclude by Theorem 6.6. |

6.2. Failure of top-down projection and blow-up of cost functions. In this section, we point
out two major differences between the classical Euclidean and the Carnot group settings. In contrast to
the Euclidean case, we cannot project the Talagrand inequality from Theorem 6.6 down to a Talagrand

inequality for B;. Moreover, the cost functions C,, do not converge pointwise to the cost Cy.



TRANSPORT INEQUALITIES FOR CARNOT PATH SPACES 25

We start by giving the corresponding projection result in the Euclidean setting, which we prove via
the contraction principle from Lemma 2.2. Let ]51: Q — R™, w +— w; denote the map that evaluates a

path at time ¢t = 1, and recall the Euclidean Cameron—Martin cost ¢y defined in (2.1).

Proposition 6.8. Letn be a Borel probability measure on Q and suppose that n € T2(82, ¢3¢, @), for some
€ (0,00). Then (ﬁl)ﬁn € T2(R%,|. — .|, a), where | - | denotes the Euclidean norm on R%:.

Proof. For any w,w € ) such that w — @ € H, Jensen’s inequality implies that
|w—@|%2 = sup ‘/ s — W) ds < sup t/ |y — TWg)? ds</ s — ws|?ds = ||lw —@||%
te[0,1] tef0,1]

Thus, for any w, @ € §,
|Prw — Piaf® < flw =313 < (w0, ).

Hence the contraction principle from Lemma 2.2 yields the claim. O

Now consider the law g of the Brownian motion B on G. Let P;: ¢ — G denote the projection of
a G-valued path onto its final time evaluation; i.e. Piw = w; for any w € G. Suppose that there exists

Q¢ C Q¢ with x(26) = 1 and some measurable function L: Qg — [0, 0o] such that
(6.8) deoc(Piw, P@) < L(w)Cx(w, ),

for all w,w € Qc. If L € L™ (p), then, by Lemma 2.2, the 75 inequality for g implies a 7Tz inequality

for p1. If we only have L € L(p) for some g € [2,00), then Lemma 2.2 still implies a 7, inequality for

_ 2q
b= 2+q €

thus the contraction principle from Lemma 2.2 is not applicable.

[1,2). The following result shows that any such L cannot belong to L? for any ¢ € [2, 00|, and

Proposition 6.9. Let L: Qg — [0,00] be as in (6.8). Then u(L = oco) > 0. In particular, L ¢ LI(p)
for any q € (0, 00].

We make use of the following example in the proof of Proposition 6.9 and again below in the proof of

Proposition 6.11.

Lemma 6.10. Let a > 0 and define h € H by hy = (at,0,...,0) € R%, for all t € [0,1]. Then, for any
s,t € [0,1] with s <t, there exists a standard normal random variable Zs 4 such that

A2 (Bay, (ThB).y) > aC(t — 5)2| Zs ),

for some constant C > 0 independent of a, s and t. Moreover, for u,v,s,t € [0,1] withu < v < s < ¢,

the random wvariables Z,, , and Z,; are independent.

Proof. For B = (BMW, B®), write B = (BY,...,B%). Let s,t € [0,1] with s < t. Since h is only

non-zero in its first component, Remark 2.18 implies that

B;tl(ThB St_< Stvazwlj/ S—T‘)dBﬂ)
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Choose k € {1,...,m} such that s} = Z o [wh ;|* > 0. By the left-invariance of doc and the estimate
(2.11), there exists a constant x > 0 such that

dec(Bs,t, (ThB)sy) > ak™

Zle/ (s —r)dBI|.

By It0’s isometry, we can define a standard normal random variable
Zoy =5, (t—s)~ \[Zwlj/ (s —r)dBi.

Thus, setting C' = 372k~ 's,, we have
A2 (Bay, (ThB).y) > aC(t — 5)% | Za ).

The independence property follows from the independence of Brownian increments. O

Proof of Proposition 6.9. Suppose for contradiction that p(L < co) = 1. Let B be a Brownian motion
on G, let § > 0, and define h € H by h; = (6¢,0...,0) € R, for all t € [0,1]. By Lemma 6.10, there
exists a constant C' > 0 independent of § and a standard normal random variable Z such that we have

the lower bound
d%o(P,B, P, (T, B)) > 6C|Z|.
On the other hand, by definition of the cost C'y,
C(B, TiB) = ||h]3, = 6.
Therefore, (6.8) implies that
Cé|Z| < L(B)&>.

Since both |Z| and L(B) are almost surely finite, taking the limit as 6 — 0 gives a contradiction. O

We now show that, contrary to the Euclidean case, the cost functions C,, defined in (6.2) may not

converge pointwise to C'y;. Again, we use the example from Lemma 6.10.

Proposition 6.11. Let B be a Brownian motion on G, and define h € H by hy = (¢,0,...,0) € R%, for
allt € [0,1]. Then
lim C,(B,T,B) =

n—oo

almost surely.

Proof. Fix n € N. By Lemma 6.10, there exist independent standard normal random variables Z, ,
ke {1,...,2"}, such that
2" 2"
C2(B,TyB) =2"> dic(Bum_ ap,(ThB)ip_ n) > C27"2 | Z, 4.

k-1t
k=1 k=1
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Note that (|Z,,k|)k=1,....2» are independent half-normal random variables with mean /2/7 and variance
1 —2/m. Thus, by Chebyshev’s inequality, for any ¢ > 0,

( Z\Znﬂ \/2/7

The right-hand side is summable in n and so, by the first Borel-Cantelli lemma,

> <6731 -2/m)2”

on

nh_)n;OQ Z |Zn.1| = /2/m almost surely.

k=1
Hence, we have
on
liminf C?(B, T, B) > C lim inf 2" n/2. 9= "Z | Znk| = Cy/2/m lim 2"/2 = 40,
almost surely. O

When the marginals are related by a deterministic shift, we can identify the optimal coupling for the

cost Cyy, and we have the following equality.

Lemma 6.12. Let h € H be deterministic and v = Law(1,B). Then Tc,, 2(p, V) admits a unique

optimal coupling, this coupling is induced by a Monge map, and
T, 2(1,v) = E[C}(B, Ty, B)] = 2H (v||p) < 0.

Proof. The second equality follows from Theorem 3.3. Indeed, if v = Law(7,B), then h = b” for the
Follmer drift b from Theorem 3.3. Since v = Law(7T),B) < p, we have that H(v||p) < oco. Now, from
the definition of C;, and the fact that h € H is deterministic, we have optimality of A* = Law (B, T, B).
To see this, let A € II(w,v) and consider the event E = {(w,@) € Qs X Qs : @ = Tng—mww |- If
A(E) < 1, then by definition of Cy, we have [ C% (w,w)dA(w,w) = +oo. Suppose now that A(E) = 1.
Then, by Jensen’s inequality,

/C%(w,w) dA (w, ) :/Hma—mwﬂi dA(w,w)

> H/madu(w) - /mwdu(w)Hi = [|al3

Equality holds if and only if A({ (w,@) € Q¢ x Qs : m@ —mw = h}) = 1. Combined with the condition
that A(E) = 1, we see that any optimal coupling is concentrated on the graph of the function T} : Q¢ —
Qc. Thus, there is a unique optimal coupling of Monge form given by A* = (id x T )y = Law(B, T}, B),
and T%H,Q(u, v) = E[C%(B,T,B)]. O

Remark 6.13. Let h € H be as in Proposition 6.11. Since v = Law (T} B) < w, we have that H(v|u) <
co. By Lemma 6.3, we thus observe that T, o2(p,v) < H(v||p) < oo. However, Proposition 6.11 shows
that lim, o Cpn(B,TpB) = 400 almost surely. Thus Law (B, Ty B) is suboptimal for some C,,, n € N.
In the case of the Heisenberg group G = H", this suboptimality can already be seen for T o 2 (1, 1).
Indeed, [AR04, Theorem 5.1] shows that there is a unique optimal coupling and that this coupling is
concentrated on the graph of some function ¢: H* — H". Taking, for example, h as in Lemma 6.10, it is
clear that Law(By, (T, B)1) is not concentrated on any such graph, since (T3, B)1 is not measurable with

respect to o(By).
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6.3. Riemannian approximation of the Heisenberg group. In the case of classical Wiener space,
we consider paths taking values in R? with the Euclidean geometry. In the present Carnot group setting,

we note the following two distinctions:

(i) (G,dcc) is a sub-Riemannian metric space (the sub-Laplacian is hypoelliptic);

(ii) the group operation on G is non-commutative.

It is shown in [CDPTO07, Theorem 2.12] that any Carnot group can be approximated by Riemannian
manifolds in the sense of pointed Gromov—Hausdorff convergence; see also [AS20, Section 2.5] and, for the
Heisenberg group, [AR04, Section 6]. In making this approximation, we move out of the sub-Riemannian
setting but retain non-commutativity. We observe that, in this case, a 75 inequality on path space also
holds (Proposition 6.14) and that the blow-up of discretised cost functions shown in Proposition 6.11 does
not occur (see Proposition 6.17). The failure to recover the 75 inequality on the underlying space via
projection that was shown in Proposition 6.9 is still observed (Proposition 6.16). However, in contrast to
the sub-Riemannian case, we can use the contraction principle to obtain a 7, inequality on the underlying
space for any p € [1,2) (Proposition 6.15).

In order to ease the presentation of this section, we specialise to the Heisenberg group H = H! = R2g@R.
Recall the left-invariant vector fields (V4, Vs, V3) = (XY, Z), where

X =0, +3y0.,, Y=0,-3%20.,, Z=[X,Y]=0.,
and the group operation
za' = (z+2' y+y 2+ + Ly —2'y), == (z,y,2), 2 ="y, ) eH.

For ¢ > 0, define the manifold M, to be R2®R equipped with the Euclidean topology and orthonormal
basis (X,Y, Z.), where Z. = ¢Z. Let d. denote the induced Riemannian distance, which is again left
invariant. By [CDPTO07, Theorem 2.12], (H,dcc) is the limit of the Riemannian manifolds (M., d.) as
€ — 0, in the sense of pointed Gromov-Hausdorff convergence. As in [AR04, Section 6], we see that, for

any ¢,y € M.,

dtay) = int{ [ I+ 7+ 22157 — B — ARt s € AC(0. 1, M), 0 = 2 =3},
and, for g,e1 > 0 with e; < g,

dey (@, y) < de, (z,y) < dcc(z,y) = Sup de(,y).
Moreover, by [Juil4, Lemma 1.1], there exists a constant ¢ > 0 such that, for any ¢ > 0, @,y € M.,

(6.9) doc(z,y) < de(x,y) + ce.

We will also make use of the following bounds. There exists a constant ® > 0 such that, for any € > 0
and = (0,0, 2) € M,

(6.10) R(|2]7 —€) < de(0,) < e V2],

where the lower bound follows from (2.11) combined with (6.9), and the upper bound from considering

the length of a purely vertical path.
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On the space (M., d.), we consider the same non-commutative group law as on H, but now the distance
d. is Riemannian.
Consider a Brownian motion B on R? with law p and Cameron—Martin space H = W01’2([O, 1],R?).

We can define a Brownian motion B¢ on (M, d.) by
dBf = X(B°)dB}! +Y(B®)dB? + Z.dB},
and let p¢ = Law(B®). Explicitly, B® = (B>("), B>(?)) with
aB;"M = a(BY, B?),, d4BS? = %(Bf dB} — B} dB?) + ¢ dB}.
Let Q := C([0,1],R?) and Q¢ = Cy([0, 1], M), and define a map ¥=: Q — QF by
e (w) = (0,ew’)¥((who?)), w=(w!o’,w’)eq,

where W is the lift map defined in Definition 2.12. Define its domain as Dom(¥¢) = {w = (w!, w?,w?3) €
Q: (wh,w?) € Dom(¥) }. For w absolutely continuous, ¢ takes the explicit form

1t
Ve (w) = ((wtl,wtg), 5/ (w? dw? —wfdwi)—&—aw?), t e 0,1].
0

Similarly to Proposition 2.13, we have that B = ¥¢(B) almost surely. We can also define a shift map
Te: QF — QF, for any h = (h', h? k%) € H, by

Tiw = (0,eh®) T poyw, w € Q.
Then, similarly to Proposition 2.16, for any w € Dom(¥¢) and h € H, we have
Ty (w) = ¥%(w + h).
Now define a cost function C5,;: 2° x 2° — [0, 00] by
|h]l, if@w=Tfw, forsomehecH,

C5/(w, @) =
400, otherwise.

Taking the same approach as in Theorem 4.4, we see that u® satisfies a 75 inequality with this cost.
Proposition 6.14. We have the cost-information inequality p° € To(2°,C5,, 1).

Proof. As noted in Section 2.1, p € T2(2, ¢4, 1), where the cost ¢y is defined in (2.2). We also have that
pe = Y5 and p(Dom(¥°)) = 1. Moreover, for any z,y € Dom(¥®) with h ==y —z € H,

C5,(¥° (), W5 (y)) = C5,(¥° (), U° (x + h)) = C5,(¥° (2), T;;¥% (2)) = [|h]I3, = el ).

In case y —z ¢ H, then both sides are infinite. Thus, applying the contraction principle from Lemma 2.2,
we have that p® € 75(Q°,C5,,1). O

In contrast to the sub-Riemannian setting, pu® € 72(Q°,C5,,1) implies a 7, inequality for pj =
Law(B5), for p € [1,2), with a constant depending on e.
Let Pi: Q° — M, denote the projection P;(w) = wi, for w € ¢, so that puj = (P;);p°.

Proposition 6.15. Suppose that p* € T2(Q°,C5,,1). Then, for any p € [1,2), there exists a(e,p) > 0
such that lime_o a(e,p) = 0 and p5 € Tp(Me, d., a(e, p)).
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Proof. Suppose that w,w € ¢ with @ = T{w, for some h € H. Define h = ¥¢(h) and v, = wfl(Tf;w)l.
Then

de(P1(w), Pi(w)) < de(h1,71) + de(0, hy).

We bound d. (0, k1) by the length of the curve ¢t — h; in Q° to get

1
de(0,hy) < / \/\h}\g + |22 + e 2|eh? + §(hth2 — h2hb) — 5(hih2 — h2h1)[? dr
(6.11) 0

1
:/ \/\h%\Q +[R2[2 + (A3 dr < [h]|.
0
Similarly to Remark 2.18, by integration by parts,
1
(6.12) hily, = (o/ (h} dw? — h2 dwi)),
0

and so, by (6.10),

1
d.(hy, 1) gg—l‘/ (hi dw? —hzdwi)
0

< 267 wlloo I3,

where ||wl|oo = sup;epo 1 |(w},w?)|. Hence
de(Py(w), P (@)) < (14 27 Hlwlloo) 12l = (1 + 267 H|w]loo) O (w, @)

In the case that there does not exist h € H such that @ = Tpw, then the same inequality holds trivially.
Next note that, for any g € [1,00), w — ||w|le € L4 (). Let p € [1,2) and set ¢ = ;fpp € [2,00). By

the contraction principle from Lemma 2.2, we conclude that
i € T(M.,d-,ale,p)), where a(e,p) = (1+2c7'E[|B]|%]7) ",
and we see that lim._,o a(e,p) = 0. O

Analogously to the sub-Riemannian setting, however, it is not possible to recover a 75 inequality via

the contraction principle, as the next result shows.

Proposition 6.16. Let Q C Q¢ such that p(2) = 1, and let L: QF — [0, 00| be a measurable function
such that

de(Piw, Pw) < L(w)C5(w, w),
for all w,& € Q. Then L ¢ L™ (pue).
Proof. Suppose for a contradiction that L € L>(uf). Define h € H by hy = (¢,0,0) € R?, for all ¢ € [0, 1].

Then, similarly to Lemma 6.10, we can apply (6.12) and (6.10) to see that there exists a standard normal

random variable Z and a constant C(g) > 0 such that
d2(Bi, (T; B*)1) > C(e)| Z].

We also have C5,(B®,T; B°) = |||l = 1. Thus C(e)|Z| < L(B*®). Since |Z| is not essentially bounded,

we arrive at a contradiction. O
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Finally, in the Riemannian setting, we do not observe the blow-up shown in Proposition 6.11. For
n € N, define a cost C%: QF x Q° — [0,00) by

27’1,
€ ~\2 __ on 2 ~ ~ 5
Cr(w,w)* =2 E ds(wtz‘_ptiﬁﬂwtﬁ_ptz)v w,w € N°.
k=1

Proposition 6.17. For any h € H, we have
limsup C5 (B¢, TEB?) < C5,(B°, TEB?) = [,
n— oo

almost surely.

Proof. Define Z by Z,, = B;tl(T,fB)S_’t, for s,t € [0,1] with s < ¢, and h = ¥¢(h). Let n € N. By
Young’s inequality, we bound

(6.13) Co(BS TEBY)* < (14 n)C5(h, Z)° + (1 + 1)C5(0,h)2.

Asin (6.11), we bound dg(h¢r_ , hyp) by the length of the curve h; i.e.

th . . .
de(hen_ hin) g/t \/|h;\2+|hg|2+|h§|2dr.
k—1

Applying the Cauchy—Schwarz inequality, we have

2 ot : :
G0 =2 3 iy k) <37 [ (P B2 1P dr = A,
k=1 k=1""k-1

and so
limsup(1 + 2)C5 (0, h)* < ||h|3,.
n—oo

Next, similarly to (6.12) and Remark 2.18, we have

t
ho 1 Z,, = (o/ (nt, B2 02, aB})).

Therefore, using the estimate (6.10) and the fact that B is almost surely S-Holder continuous for any

B € (0,1/2), there exists a constant ¢ > 0 such that we have the almost sure bound

t 2 t 2
2(0,h; 1 Z,,) < 5—2‘/ hl, dB? —1—5_2‘/ h2, dB!
t .
< e 2Bl o2 [ i

where ||B||g is the 8-Hélder norm of B. Hence

27Z

Co(h,2)* =2y d2(0,hyt 1w Zip | 4p) < ce 22727 2R3 || B|E = ce=2||R]13, )| BIF2 7",

k=1

and so lim,, (1 4+ n)CE (h, Z)? = 0 almost surely. We conclude by (6.13). O

6.4. I'-convergence of the cost functions. Despite the pointwise blow-up of the cost functions C,, that
we demonstrated in Proposition 6.11, we now show that C,, does converge to Cy in a variational sense.

More precisely, the sequence C,, converges to Cy in the sense of I'-convergence, a notion of convergence
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for families of minimisation problems that is formulated in terms of asymptotic lower and upper bounds.
On a metric space (E,dg), we say that a sequence of functionals F,,: E — R U {oo} I'-converges to a
limit Fioo: E — RU {00} if

(i) for every sequence x,, — x in E, we have F(z) < liminf, . F,(z,); and

(i) for every x € E, there exists a sequence T, — x in E such that limsup,, . Fn(Tn) < Foo(x).
The sequence (Z,,) in condition (ii) is called a recovery sequence as it “recovers” the correct energy level
F(z) from the approximating energies F,(Z,) by adding suitable oscillations to . One may view
I'-convergence as describing the asymptotic behavior of energy landscapes, in close analogy with large
deviation principles, which characterise the asymptotics of probability measures via their rate functions.
Indeed, the interplay between I'-convergence and large deviation principles has been studied in several
publications; see e.g. [Marl8, Berl8]. A central advantage of I'-convergence is its stability property:
convergence of functionals implies convergence of minimal values and, under mild compactness assump-
tions, convergence of (almost) minimisers. For a comprehensive treatment we refer to the monographs
[DM93, Bra02, Rin18].

We will see that the I'-convergence of the cost functions C,, implies the convergence of the associated
optimal transport problems; i.e. for every v € P(€g) there exists a sequence of probability measures
U™ € P(Qg) such that the associated transport costs T¢, 2(P", p) converges to T, 2(v, p) as n — oo.

In the Euclidean case with cost ¢, defined as in (6.4), we have for w,& € Cy([0,1];R?) with h = w — @
the formula ¢, (w,©) = fol |8Sﬁ"|2 ds, where h™ is the piecewise affine interpolant for k. One readily
verifies that ¢, (w, @) converges to |||l if h € H and to +oo otherwise; cf. Lemma 6.4. In particular, the
I'-convergence of ¢, also holds in this setting with the same limiting cost.

Recall that we consider the metric space (Qg, dw ), Where do is the uniform metric defined in (2.13).

We start with the following lemma, which gives the pointwise convergence of the cost to the Cameron—

Martin norm for horizontal curves.

Lemma 6.18. Let h € H, and let h = VU(h) denote its lift to Qg. Then, for the family of cost functions
(Cn)nen defined in (6.2), we have Cp(0,h) < ||hlly and lim, oo Cn (0, ) = ||h]|2-

Proof. Let h € H and let h = W(h). The curve ¢ — h; € G is horizontal and therefore, for every
0 <s<t<1, we have

t
dec(hs, hy) S/ || dr

Applying Holder’s inequality, we obtain the estimate

2m 2mn o ]
C2(0.0) =23 declhuyhuy P <3 [ i dr = [l
i=1 i=1 Yt

Taking the limsup on the left-hand side gives limsup,,_, ., C (0, h) < ||h|%.
To show the lower bound, define a piecewise constant function ¢™: [0,1] — [0, 00), for each n € N,
by gi = 2"dcc(hyr, by ) for t € [t} 4,1), i € {1,...,n}. Note that the sequence (¢g") is uniformly

im130;
bounded in L?([0,1]). Hence, we can extract a weakly converging subsequence such that g"* — ¢ in
L2([0,1]). For given 0 < r < s < 1, we can find indices i, jn € {1,...,2"} such that, for r,, = ¢}’ and

n

Sn = t.?n’

0<r,<r<s<s,<1, and Ilm r,=r, lim s, =s.
n—oo n—oo
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By the triangle inequality and the continuity of ¢ — hy, there is a sequence (e,) C R such that &, — 0
and 4
In Sn
doo(hr,hs) <Y doo(bun, hun ) + doc (b, hr,) + doc (s, hs,) = / gr dt +ep.

i=in n
Passing to the limit as n — oo, we infer that doc(hy, hs) < fTS g:dt. Now, by the minimality of the
metric derivative (see Remark 2.8), we obtain g, > |h| for almost every ¢ € (0,1). Finally, since
C2(0,h) =2 222:1 dgc(hen, hyn ), lower-semicontinuity of the norm implies that

1 1
liminfC’Z(O,h):liminf/ (gf)zdtz/ g7 dt > |[f3,
0 0

n—0o0 n—oo

which finishes the proof. ([l

The next lemma shows that the cost C), blows up along sequences w”™, @™ that converge to limits w, @
whose difference w™'@ is a purely vertical process; i.e. t — (w™1@), = (0,6;).

Lemma 6.19. Let w,w € Qg, and let (w"),(@") C Qs be sequences such that lim,_, . (w™,&") =
(w,w). Suppose that there exists a non-zero 8 € Qg such that 8; = (0,60;) and @, = w0, for all
t €[0,7]. Then lim, o Cp(w™, &) = co.

Proof. Suppose for contradiction that C,, (w™,@") is bounded uniformly in n. We use the equivalence of
the gauge distance dy and the Carnot—Carathéodory distance dcc from (2.11) to obtain the lower bound

2’71 n 2’7l n 271
2 ~ 2 ~ 2 2
Cn(@", &™) =2" Y doc (@ @iy ) 2 - D do(Wh @ ) = D 100l

k=1 k=1 k=1
where 07, = my((wl';)"'@,) are the increments of the vertical process. Let g7 denote the piecewise
affine interpolant associated with the increments 9?;:_1,% with 6 = 0. The above estimate gives the
bound C,,(w", &")? > %||§”||W1,1, where the left-hand side is uniformly bounded with respect to n by
assumption. Thus 8" — 0 in Wy ([0,1],R%) and so 6 = 0 as W, ([0, 1], R%) < Cy([0,1],R%), giving a

contradiction. We conclude that lim,,_ s Cp(w™,@™) = 0. O

Now we prove condition (ii) in the definition of I-convergence for C,, i.e. the existence of a recovery

sequence. In fact, we show a stronger version; see Remark 6.23.

Proposition 6.20. Let w,w € Qg and let (w™) C Qg be a sequence such that w™ — w. Then there
exists a sequence (W) C Qg such that @™ — @ and

(6.14) limsup Cp, (W™, @") < Cy(w,w).

n—oo

Proof. We only have to consider the case w = Thw for h € H, since the right-hand side in (6.14) is
otherwise infinite by definition of C% in (2.18), and the inequality holds trivially. Let w € Qg, h € H,
and @ = Thw. Consider a sequence (w") C Qg such that w” — w in Q. For each n € N, define
w" = Trw™ € Qg. By the continuity of the shift map from Proposition 2.16, @" — w = Thw in Qg. As

in Remark 2.18, we introduce the non-commutativity error

eg,t = h;tl(“-’?,t)_lw?,t = (Oﬂag,t)a

where 07, = (/t Wh, ® dwf).
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We define 9" € Qg such that its increments satisfy (19?;;71)_119?7: =0 n. Indeed, we set 97 = (0,97),
where

0 =0 and O} =9 +0p ,, for te(ti_y, ], ke{l,..., 2"}
We emphasise that, for any ¢ € [0, 1], 97 is an element in the centre of the group G. In particular, it
commutes with every element in G. Therefore, defining the curve t — @) = Wy (¥})~! € G, we obtain

that its increments satisfy
‘:’;l,t = w:,t('ﬁ?,t)il = (ﬁ?,t)ilwzta 0<s<t<1l
Using the left-invariance of doc and the definition of 9™, we find that, for k € {1,...,2"},

2 (O )7

dco (w%_lvtﬁ ’ &?E_ptﬁ) = dcc (0’ (w&—l*tz)ilw?n k-1

k—1>
= dCC (0, htzil’tge;?n tZ( &71,t2)_1) = dCC(Oa ht};pt};)

k—1>
Lemma 6.18 now allows us to pass to the limsup. More precisely, we have that
limsup Cp, (w",w") = limsup Cp, (0, h) < Oy (w,w).
n—oo n—oo
It remains to show that @™ — w. Due to the convergence @™ — w it suffices to show that 9™ — 0 in
Qg or, equivalently, 9* — 0 in C([0,1],R%). Using the definition of ¥", we find a constant C' > 0 such
that

|97 <C sup max sup | w1,

k=1,..,2n ©<J telp_| 7]
Since w™ converges uniformly to w, the right-hand side vanishes as n — oo. O

We now prove the lower estimate that is required in condition (i) of the definition of I'-convergence.

Proposition 6.21. Let w,w € g, and let (w"), (@") C Qs be sequences such that lim,, oo (W™, @") =

(w,w). Then liminf,,_, o Cp(w™, &™) > Oy (w,w).

Proof. Consider a pair of curves (w,w) € Qg X Qg and a pair of sequences (w",w") C Qg x Qg such
that lim, e (W™, @") = (w,w). We will consider three cases.

Case 1a. First, we consider the case that w = Thpw for some h € H. We may assume that [ :=
liminf,, o Cp(w™, @™) < oo, since otherwise the inequality holds trivially. Let A" = m@™ — mw™ so
that h™ — h in C([0,1],R%). We now apply Lemma 6.4 (iii), to see that

on
(6.15) liminf C,, (&", w")* > lim in anzl |hfy — hiy [* = liminf B3,
where 7" is the piecewise affine interpolant of A™. Since I € [0, c0), we can assume that h™ is bounded in
H and is weakly converging to a limit h € H, which we see is equal to h. By weak lower semicontinuity
of the L? norm we obtain liminf, o, Cy, (@™, w™)? > ||h||3,.

Case 1b. Now suppose that @ = Tpw, where h = m@w — mw ¢ H. Then Cy(w,w) = co. Supposing
again that I := liminf,, o C,(w™,@") < oo, following the same argument as above leads to h € H,
which is a contradiction. Thus, lim inf,, ., Cp,(@", w™)? = oco.

Case 2. We now assume that h := mw — mw € H but @ # Thw; i.e. w is not a shift of w. We show

that Cp, (@™, w™) — co. Define @ = Tjpw such that, by assumption, @ # @ but m& = m@. Therefore,
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there exists 6§ € C([0, 1],R%) such that 6 # 0 and @ = &0 with § = (0,0). By Proposition 6.20, we find
a sequence @W" such that @" — & and

(6.16) limsup Cp, (W™, @") < Cy(w,®) = ||h]|ln < .

n—oo

Now, by the triangle inequality and the estimate (a + b)? < 2a? + 2b%, for any a,b € R, we see that
Cp (@™, @™)% < 20, (W™, &™) 4 2C, (@™, w™)2.

By (6.16), the first term on the right-hand side is bounded by 2||||3,. By Lemma 6.19, we also have

lim,, 00 Cp (@™, @")? = 0o. Thus we conclude that lim,, o, Cp(@", w™) = oo. O
Combining Propositions 6.20 and 6.21, we deduce the following I'-convergence.
Corollary 6.22. On Qg X Qg equipped with the uniform topology, we have the I'-convergence C,, 5 Cy.

Proof. The liminf inequality follows directly from Proposition 6.21. The limsup inequality in this setting
reads: For every pair (w,w) € Qg x Qg, we can find a sequence (w", @") converging to (w,w) such that
limsup Cp, (w™,w") < Cp(w, ).

n—oo
Proposition 6.20 tells us that in fact we can take any sequence w™ converging to w and the sequence "

constructed via adding a suitable perturbation. O

Remark 6.23. Let us note that Proposition 6.20 is stronger than the standard lim sup condition in I'-
convergence. In particular, we can choose the constant sequence w”™ = w such that the recovery sequence
is obtained via a map ®"(w,w) = (w,®"). We will use this map ®" to construct sequences of transport
plans A" that are recovery sequences for the family of optimal transport problems associated with C,;

see Proposition 6.26 below.

Having shown the I'-convergence of the cost functions C,,, we can now deduce the I'-convergence of the
associated transport problems. For n € N, define the family of transport functionals I,,: P(Q2cxQs) —
[0,00] and I : P(QexNs) — [0, o0] via

In()\):/ C?dX and Ioo(/\):/ C3d\, A€ P(Qe x Qo).
ngﬂs QGXQG

Proposition 6.24. Let (A") C P(Q x Q) be a sequence of probability measures such that X — X in
P(QG X QG). Then
liminf L, (A™) > Io(A).

n—oo
Proof. By Skorokhod’s representation theorem, there exists a probability space (2,2, P) and random
variables Y": = — Qg X Qg and Y: = — Qg x Qg such that A" = Y#P, A=YyP,and Y" = Y
P-almost surely. We conclude that

lim inf / Cp(w,@)?dA" = lim inf / Co(Y™)2dP
Q(;XQG

n— 0o n—oo [=

2/lirginf(]n(Y")QdPZ/CH(Y)ZdP:/ Co(w, @)% d,
= oo = Q

G X Qe

by Fatou’s lemma and Proposition 6.21. O
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Remark 6.25. Given Proposition 6.24, we find a much more direct proof of Theorem 6.6. Indeed,

combining Lemma 6.3 and Proposition 6.24 yields the result immediately.

Proposition 6.26. Let A € P(Qg x Qg). Then there exists a sequence (A") C P(Qg x Qg) such that
A" X and
(6.17) limsup I, (A") < I (A).

n—oo
Proof. We may assume that the right-hand side in (6.17) is finite as the inequality is trivially true
otherwise. In particular, we have (w,@) — C%,(w,w) € L'(A) and, for A-almost every (w,w) € Qg x Qg,
we have that @ = Tj,w for h = m (@ 'w) € H.

Define A" = DU € P(Qc x Qg), where ™: Qg x Qs — Ns X Qs maps (w,w) to (w,w") as in
Remark 6.23. Then, for any (w,®) € Q¢ x Qg, we have & (w,®) — (w,@) and A" — X as n — co. By
Propositions 6.20 and 6.21,

(6.18) lim Cp(P" (w,w)) = Cy(w, ).

n—oo
Moreover, by Lemma 6.18, we have Cp,(w,®") < |||l = Cx(w,w). Using Fatou’s lemma with
integrable upper bound C% (w,w) gives
lim sup/ C?(w, @) dA™ = lim sup/ C2(d"(w,@))dX < / lim sup C2 (™ (w, @)) dA.
QGXQG QGXQG

n— 00 n— oo Qe xNg n—oo

The assertion now follows from (6.18). O

Corollary 6.27. On P(Q2 x Q¢) equipped with the weak topology, we have the I'-convergence 1, LN I.
The following theorem is a version of the fundamental theorem of I'-convergence in the present case.

Theorem 6.28. Let n € P(Qs). Then T, 2(n,-) L Te,, .2(n, ) with respect to the weak topology on

P(Qs). That is

(i) For any v € P(Qg) and any (v™) C P(Qg) such that v" — v, liminf, . Tc, 2(n,v") >
Te,, 2(n,v); and

(ii) For any v € P(Qg), there exists a sequence (V™) C P(Qg) such that lim, o Tc, 2(n,v")
Tey, 2(n,v).

Proof. (i) Let v € P(Q2s) and (v™) C P(Qs) such that ™ — v, and let (A") C P(Qs x Q) be a
sequence of optimal transport plans for T¢, o(n,v™). We can assume that A" converges weakly to a
limit XA € P(Qc x Q) since its marginals are tight by Prokhorov’s theorem; see [AGS08, Lemma 5.2.2].
The limit A has marginals 17 and v and is hence an admissible transport plan for T¢,, 2(n,v). Using
Proposition 6.24, we get the chain of inequalities

Te,, 2(n,v) < / C%(w,@)dX < lim inf/ C?(w,w)dA™ = liminf T¢, o(n, v™).
QGXQG

Q%6 n— oo n— 00
(ii) Now let A € P(Qg x Q) be an optimal transport plan for T¢,, 2(n, V) (note that Cy is lower

semi-continuous; see Lemma 2.20). Let the sequence of transport plans (A") C P(Qg x Q) be given as

in Proposition 6.26, and define ™ as the second marginal of X”, for n € N. The first marginal of A" is
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fixed to m for all n € N. Thus o™ — v. Moreover, by Proposition 6.26 and the optimality of X,

limsup/ C?(w, @) dA" < Tz, 2(n,v).
Qe XN ’

n—oo

On the other hand, if (A") € P(Qs x Q) is a sequence of optimal transport plans for T¢, o(n, 7™), we
can assume that X — X, where the limit A has marginals n and v. By Proposition 6.24, we get
Thatnw) < [ Chw.@)dX < lmint T2 o0, 7").
QX Ng n— oo

Combining both estimates proves the claim. (Il

Remark 6.29. In general, we cannot rule out that there exists a sequence v™ converging to some limit
v such that lim,,_,o T, 2(n,v™) > Te,, 2(n,v). The crucial point in Theorem 6.28 is that the sequence
U™ is a special sequence constructed via the push-forward of the recovery map ®". It is an interesting
question whether the following stronger result holds: Let dyy(y, ,») denote the convex indicator function
(taking values in {0, 00}) for the set of admissible plans, i.e. dry(y ) (A) = 0 if and only if A € II(n,v™),
and let v € P(Q2), (v™) C P(2) such that ™ — v and sup,n H(V"||n) < co. Do we have the IT'-
convergence I, + dry(n pm) EN Lo + d11(n,)? This property would imply that T¢, 2(n,v") — T, 2(n,v)

for every converging sequence v" with finite relative entropy.

7. BEYOND STEP-2 CARNOT GROUPS

Parts of this work are valid in the generality of general Carnot groups (see, e.g. [BLUO7]). However,
Carnot groups for which the log-Sobolev inequality is known are the Heisenberg group and more general
H-type groups, which are examples of step-2 Carnot groups, as discussed in Section 2.2. This explains our
focus on step-2. Nevertheless, Theorem 5.1 holds for general Carnot groups with no restriction on the step
of the group, and the proof remains unchanged, given the appropriate definitions. Similarly, Lemma 6.1,
Proposition 6.2, and Lemma 6.3 carry over without change to the general Carnot group setting. Finally,
Theorem 6.6 also holds for G = F%:V .. for step-N free Carnot groups, under additional regularity
assumptions for N > 2. On the space of p-variation paths, for any p such that the shift by an absolutely

continuous path is well defined, the proof of Theorem 6.6 remains valid; see also Remark 2.17.
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