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Abstract

In this report we investigate how the well-known central limit theorem for i.i.d.
random variables can be extended to Markov chains. We present some of the
theory on ergodic measures and ergodic stochastic processes, including the er-
godic theorems, before applying this theory to prove a central limit theorem for
square-integrable ergodic martingale differences and for certain ergodic Markov
chains. We also give an alternative proof of a central limit theorem for sta-
tionary, irreducible, aperiodic Markov chains on a finite state space. Finally,
we outline some of the diverse applications of the Markov chain central limit
theorem and discuss extensions of this work.
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Introduction

A central limit theorem gives a scaling limit for the sum of a sequence of random
variables. This controls the fluctuations of the sequence in the long run. It is
well known that there is a central limit theorem for sequences of i.i.d. random
variables; the theorem is given, for example, in Chapter III, Section 3 of [11].
This is a very useful result to have, and it is a natural question to ask whether
this can be generalised to sequences of random variables which are not i.i.d.. In
this report we show that we have a central limit theorem for functions of discrete-
time Markov chains under certain conditions. This central limit theorem has
many applications, some of which we discuss in later chapters. We now outline
the structure of this report.

In Chapter 1, we collect preliminary material on measure theory and prob-
ability from various sources, which we will refer to later in the report. This
includes definitions of modes of convergence of random variables, which we will
need to be familiar with in order to understand in what sense the limit theorems
in later chapters hold. We then recall elementary properties of Markov chains,
which will be useful for us to have in mind when we consider limit theorems
for Markov chains. We give rigorous definitions of conditional expectation and
martingales, as well as some results on these, which we will use in the proofs
of several theorems in later chapters. Here, we also define martingale differ-
ences, which are processes related to martingales, as we will study the limiting
behaviour of these processes in Chapter 3, in order to prove a central limit
theorem for Markov chains.

In Chapter 2, we prove the ergodic theorems from [15], define what it means
for a measure or a stochastic process to be ergodic, and prove several results
on ergodicity. We will see in Chapter 3 that the condition that a Markov chain
is ergodic allows us, under a few additional conditions, to prove a central limit
theorem for functions of that Markov chain.

The main results of this report are contained in Chapter 3. Here, we prove
a central limit theorem for certain ergodic Markov chains in two ways. First,
we prove a central limit theorem for square-integrable ergodic martingale dif-
ferences and then, following [15], we deduce from this that we have a central
limit theorem for functions of ergodic Markov chains, under some conditions.
We then restrict ourselves to Markov chains which take values in a finite state
space. In this setting, we use a different method, as in [13], to prove a central
limit theorem for functions of ergodic Markov chains, where we have to impose
fewer conditions than in the case of a general state space. In both cases we
derive formulae for the variance of the limiting distribution.

In Chapter 4, we discuss some simple applications of the Markov chain cen-
tral limit theorem which is proved in Chapter 3. We consider a simple random
walk on a torus, started in its stationary distribution, and we show that there
is a central limit theorem for the amount of time spent in the initial state. We
treat the symmetric and asymmetric cases separately. We also look at an ex-
ample of a random walk on the non-negative integers from [15], which could
model the length of a queue. Here we show, by a similar method, that there is a
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central limit theorem for the amount of time during which the queue is empty.
We conclude the report by discussing extensions of the theory which we have

presented and further applications of this.
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Chapter 1

Preliminary Measure
Theory and Probability

Here we present some theory on convergence of random variables, on Markov
processes and on martingales that we will need in order to approach the topics
which we discuss in the rest of this report. We assume knowledge of some basic
definitions and properties from measure theory, including product sigma-fields
and product measures, as could be found for example in Bartle’s text [1]. We
also assume knowledge of introductory probability theory, such as the material
from Ross’s book [10].
In this chapter we state results without proof that we will later apply in proving
our main results.

1.1 Convergence of Random Variables

The main results of this report concern the convergence of sequences of ran-
dom variables. Therefore, we need to recall some definitions and results on
convergence which not all readers will be familiar with. There are four types
of convergence which we will work with in this report: namely, they are almost
sure convergence, weak convergence (convergence in distribution), convergence
in Lp and convergence in measure. We will only consider real-valued random
variables in this report. We start by recalling the definitions of these modes of
convergence, as well as some useful facts, taken from the books of Bartle [1],
Grimmett and Stirzaker [6], Ross [10], Shiryaev [11], and Varadhan [15].
Throughout this section, we consider a probability space (Ω,F ,P).

1.1.1 Almost sure convergence

Let {Xn} be a sequence of random variables on (Ω,F). We define what it means
for Xn to converge to X almost surely, where X is another random variable on
(Ω,F), as in Section 7.2 of [6].
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Definition 1.1.1 (Almost sure convergence). We say that Xn converges to X
almost surely if

P
(

lim
n→∞

Xn(ω) = X(ω)
)

= 1.

We write this as Xn → X a.s..

1.1.2 Lp convergence

For our next mode of convergence, we consider function spaces called Lp spaces.
We will give a definition of these spaces as normed spaces and define what
it means for random variables to converge in Lp. Lp spaces are discussed in
Chapter 6 of [1] in the context of general measure spaces. We reformulate the
material here in terms of a probability space (Ω,F ,P).
Recall that a random variable X is defined to be an F-measurable function and
that the expectation of X is defined as the integral of X with respect to P, when
this integral exists; i.e.

E(X) =

∫
Ω

XdP.

We start by defining the spaces Lp, for p ∈ [1,∞) and then for p =∞.

Definition 1.1.2 (Lp spaces). Let p ∈ [1,∞). Then Lp (Ω,F ,P) is the space
of equivalence classes

[X] := {Y : X = Y P-almost everywhere}

of F-measurable functions X such that

E(|X|p) <∞.

Definition 1.1.3 (The space L∞). We define L∞ (Ω,F ,P) to be the space of
equivalence classes

[X] := {Y : X = Y P-almost everywhere}

of F-measurable functions X which are bounded P-almost everywhere;
i.e. [X] ∈ L∞ if and only if ∃M ≥ 0 such that |X| ≤M P-almost everywhere.

Remark 1.1.1. 1. When it is clear which space, σ-field or probability mea-
sure we are working with, we will drop the arguments from Lp so that we
may write

Lp ≡ Lp (Ω,F ,P) ≡ Lp(Ω) ≡ Lp(P).

2. Although technically the space Lp is a space of equivalence classes of
functions, we will in practice say that a function X is an element of Lp if
X is F-measurable and E(|X|p) < ∞. This is a common convention, as
remarked after Theorem 6.7 of [1].

For 1 ≤ p ≤ ∞, we can define a norm on the space Lp as follows.
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Definition 1.1.4 (Lp norm). Suppose that p ∈ [1,∞). Then we define the
Lp norm by

‖X‖p := [E(|X|p)]
1
p , (1.1.1)

for any X ∈ Lp.
We define the L∞ norm by

‖X‖∞ := inf {M ≥ 0 : |X| ≤M P-almost everywhere} , (1.1.2)

for any X ∈ L∞.

These quantities are well-defined as norms on the Lp spaces, as we assert in
the following theorem.

Theorem 1.1.1. For p ∈ [1,∞), the space Lp equipped with the norm ‖·‖p, as
defined in (1.1.1), is a normed space.
Also, the space L∞ equipped with the norm ‖·‖∞, as defined in (1.1.2), is a
normed space.

The proof that Lp is a normed space for p ∈ [1,∞) relies on Minkowski’s
inequality, which we will now state.

Lemma 1.1.1 (Minkowski’s inequality). Suppose that p ∈ [1,∞) and
X,Y ∈ Lp. Then X + Y ∈ Lp and we have the following inequality:

‖X + Y ‖p ≤ ‖X‖p + ‖Y ‖p . (1.1.3)

We are now ready to define Lp convergence, as in Chapter 7 of [1].

Definition 1.1.5 (Lp convergence). Let p ∈ [1,∞] and let {Xn} be a
sequence of random variables such that Xi ∈ Lp (Ω,F ,P) for all i ∈ N. Also let
X ∈ Lp (Ω,F ,P). Then we say that Xn converges to X in Lp if

‖Xn −X‖p
n→∞−−−−→ 0.

We write Xn
Lp−−→ X.

1.1.3 Weak convergence

Let us now define weak convergence of the sequence {Xn} as in Section 7.2
of [6]. Let X,X1, X2, . . . be random variables on (Ω,F).

Definition 1.1.6 (Weak convergence). Let Fn be the distribution function of
Xn, for each n ∈ N, and F be the distribution function of X.
We say that Xn converges weakly to X, or Xn converges to X in distribution
if, for every x at which F (x) is continuous,

Fn(x)
n→∞−−−−→ F (x).

We will denote this as Xn
D−→ X.
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We will now see two theorems which give us ways to prove weak convergence.
We first state a necessary and sufficient condition for weak convergence, by
defining the characteristic function of a random variable, as in Section 5.7 of [6].

Definition 1.1.7. Let X be a random variable. Then the characteristic func-
tion of X is the function φ : R→ C, defined by

φ(t) := E
(
eitX

)
.

This function is well-defined for any random variable X.

The statement of the continuity lemma is taken from Chapter III, Section 3
of [11].

Theorem 1.1.2 (Continuity lemma). Let {Xn} be a sequence of random
variables with characteristic functions φn. Then we have the following implica-
tions.

1. If there exists a random variable X with characteristic function φ such that

Xn
D−→ X, then φn(t)

n→∞−−−−→ φ(t) for all t ∈ R.

2. If φ(t) := limn→∞ φn(t) exists for all t ∈ R and φ(t) is continuous at
t = 0, then ∃ a random variable X with characteristic function φ such

that Xn
D−→ X.

The continuity lemma is very important in probability theory. For example,
it is used by Shiryaev in [11] to prove the central limit theorem for sequences
of i.i.d. random variables. We will use it to prove a central limit theorem for
martingale differences in Section 3.1.
We now state a theorem which gives another criterion for weak convergence for
certain sequences of random variables. We will first recall the definition of the
moment generating function, from Chapter 7, Section 7 of [10].

Definition 1.1.8. For a random variable X, the moment generating function
of X is the function M : R→ R ∪ {+∞}, defined by

M(t) = E
(
etX
)
.

Note that this function may be infinite.

We now state the theorem, which is found in Chapter 8, Section 3 of [10].

Theorem 1.1.3. Let {Xn} be a sequence of random variables with moment
generating functions Mn and let X be a random variable with moment generating
function M . Suppose that Mn

n→∞−−−−→M for all t ∈ R.

Then Xn
D−→ X.

This theorem is less commonly used than the continuity lemma for charac-
teristic functions, but we will use this form in our second proof of a Markov
chain central limit theorem in Section 3.3, following [13].

7



1.1.4 Convergence in measure

The final mode of convergence which we define is convergence in measure, as in
Section 1.3 of [15].

Definition 1.1.9. Let {Xn} be a sequence of random variables on (Ω,F) and
X another random variable on (Ω,F). We say that Xn converges to X in
measure or in probability if, for any ε > 0,

P (ω : |Xn(ω)−X(ω)| ≥ ε) n→∞−−−−→ 0.

We will see how this mode of convergence is of use to us in Section 1.1.5.
It will also be useful to note the following implication.

Theorem 1.1.4. Let p ∈ [1,∞] and let {Xn} be a sequence of random variables
with Xn ∈ Lp (Ω,F ,P) for each n ∈ N. Suppose that ∃X ∈ Lp (Ω,F ,P) such

that Xn
Lp−−→ X or Xn → Xa.s..

Then Xn converges to X in measure.

The above theorem comes from Chapter 7 of [1], where Bartle discusses all of
the relations between the modes of convergence which we have defined here. We
should note here that the above theorem is false if we are working in a general
measure space. For almost sure convergence to imply convergence in measure,
we need the condition that the total measure of the space is finite. Of course,
this is not a problem for us here, as a probability space has total measure 1.

1.1.5 The bounded convergence theorem

Let X,X1, X2, . . . be random variables on (Ω,F) and suppose that Xn → X in
some sense. We are interested in whether we can interchange the order in which
we take the limit and the expectation of these random variables.
There are a few results from measure theory which give sufficient conditions for
this to be allowed (see, for example, [1] and [11]), but we are only going to use
two of these in our work. These theorems both concern random variables which
are bounded.
The first theorem which we state is a special case of Lebesgue’s dominated
convergence theorem, which can be found in Chapter II, Section 6 of [11].

Theorem 1.1.5 (Bounded convergence theorem). Suppose that there exists a
constant C such that |Xn| ≤ C, for all n ∈ N, and suppose that Xn → X almost
surely.
Then X,X1, X2, . . . ∈ L1,

E(Xn)
n→∞−−−−→ E(X)

and
E(|Xn −X|)

n→∞−−−−→ 0.
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We can relax the condition that {Xn} converges almost surely to the weaker
condition of convergence in measure and find that Lebesgue’s dominated con-
vergence theorem still holds, as shown in Section 1.3 of [15]. Hence we have
a bounded convergence theorem for a sequence which converges in measure, as
follows.

Theorem 1.1.6. Suppose that there exists a constant C such that |Xn| ≤ C
for all n ∈ N and suppose that Xn → X in measure.
Then X,X1, X2, . . . ∈ L1,

E(Xn)
n→∞−−−−→ E(X)

and
E(|Xn −X|)

n→∞−−−−→ 0.

1.1.6 Useful inequalities

Proving convergence will involve approximating certain quantities. The inequal-
ities which we list here are very commonly used in probability and will all be
useful for us at some stage in this report.
The first inequality which we state is due to Chebyshev and is found in many
textbooks, including in Chapter II, Section 6 of [11].

Theorem 1.1.7 (Chebyshev’s inequality). Let X be a random variable and let
k ∈ (0,∞). Define µ = E(X) and σ2 = Var(X). Then

P(|X − µ| ≥ k) ≤ σ2

k2
. (1.1.4)

We now state an equally common inequality, known as the Cauchy-Schwarz
inequality, from [11].

Theorem 1.1.8 (Cauchy-Schwarz inequality). Let X,Y ∈ L2. Then XY ∈ L1

and
[E(|XY |)]2 ≤ E(X2)E(Y 2). (1.1.5)

Finally, we state and prove an immediate corollary of the Cauchy-Schwarz
inequality.

Corollary 1.1.1. Let X,Y ∈ L2. Then

Cov(X,Y ) ≤
√

Var(X) Var(Y ). (1.1.6)

Proof. Set µ := E(X) and ν := E(Y ). Then

Cov(X,Y )2 = [E [(X − µ)(Y − ν)]]
2

≤ E([X − µ]
2
)E([Y − ν]

2
)

= Var(X) Var(Y ).
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1.2 Markov Processes

Since a large proportion of this report will be spent on proving central limit the-
orems for Markov chains, we now take some time to review some basic Markov
chain theory. In this section we recall the definition of a Markov chain, as well as
some related definitions and properties, adapted from the material in Chapter
6 of [6].
Let (Ω,F ,P) be a probability space. We recall that a stochastic process is
defined to be a sequence of random variables on (Ω,F). Let (S,B) be a mea-
surable space in which the random variables can take values and suppose that
S is countable. We call S the state space of the process.

Definition 1.2.1. A stochastic process {Xn} is called a Markov process or
a Markov chain if it satisfies the Markov condition:

P(Xn = s|X0 = x0, X1 = x1, . . . , Xn−1 = xn−1) = P(Xn = s|Xn−1 = xn−1),

for all n ∈ N and s, x1, x2, . . . , xn−1 ∈ S.

We are only interested in Markov chains such that

P(Xn+1 = j|Xn = i) = P(X1 = j|X0 = i) =: πi,j , (1.2.1)

for all n = 0, 1, 2, . . . and i, j ∈ S.

Definition 1.2.2 (Transition probabilities). The transition matrix of a
Markov chain which satisfies (1.2.1) is defined to be the matrix Π with en-
tries πi,j .
For any m,n ∈ N, we define the n-step transition probabilities to be
πi,j(m,m+ n) = P(Xm+n = j|Xm = i).
These probabilities are independent of m, so we write πi,j(m,m+n) =: πi,j(n).
We define Π(n) to be the matrix with entries πi,j(n).

Lemma 1.2.1. For any n ∈ N, we have Π(n) = Πn.

We next define a stationary distribution of a Markov chain. This will be a
very important definition for us later in the report, particularly when we study
ergodicity of Markov chains in Section 2.5 and when we apply our theory to
examples in Chapter 4.

Definition 1.2.3. A probability measure µ on (S,B) is said to be a stationary
distribution for a Markov chain with transition matrix Π if µ = µΠ.

The following two properties of a Markov chain are common and the study
of Markov chains which have these properties is simpler than that of general
Markov chains.

Definition 1.2.4. We say that a Markov chain with transition matrix Π is
irreducible if, for each i, j ∈ S, ∃m ∈ N such that πi,j(m) > 0.
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The period d(i) of a state i ∈ S is defined to be the highest common factor
of the set {n : πi,i > 0}.
In an irreducible chain, d(i) = d(j) for all i, j ∈ S.

Definition 1.2.5. We say that an irreducible chain is aperiodic if d(i) = 1 for
all i ∈ S.

Finally, we state a result about Markov chains on finite state spaces, which
we will use in Section 2.5 to say something about ergodicity of these chains.

Theorem 1.2.1. Let S be a finite set and suppose that {Xn} is an irreducible
aperiodic Markov chain with state space S. Then the Markov chain {Xn} has a
unique stationary distribution.

1.3 Martingales

Martingales are another essential tool in our work. For example, we prove a
central limit theorem for Markov chains in Section 3.2 via the central limit
theorem for martingale differences (Theorem 3.1.1), which are processes related
to martingales and are defined below. Also, we will repeatedly use properties
of martingales in our second proof of a central limit theorem for Markov chains
in Section 3.3. We are now going to give a formal definition of a martingale
and some basic properties which we will need, without proof, from Williams’
book [16].
To define martingales, we need a rigorous definition of conditional expectation,
as given in Chapter 9 of [16].
Let (Ω,F ,P) be a probability space. Let X ∈ L1 and let G ⊆ F be a sub-σ-field.

Definition 1.3.1. [Conditional expectation] A version of the conditional ex-
pectation of X given G is defined to be a random variable Y such that

1. Y is G-measurable,

2. Y ∈ L1,

3. For every G ∈ G,
E(1GX) = E(1GY ).

It was proved by Kolmogorov that such a random variable exists and is
almost surely unique.

Theorem 1.3.1. There exists a random variable Y which satisfies the three
conditions in Definition 1.3.1.
Moreover, if Y1, Y2 both satisfy these conditions, then Y1 = Y2 almost surely.

Because of the above theorem, we refer to a random variable Y as in Defintion
1.3.1 as the conditional expectation of X given G.
We write Y = E(X|G).
The conditional expectation has several nice properties which will be useful for
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us. We take these from Chapter 9 of [16].
Let X ∈ L1 and let G and H be sub-σ-algebras of F . Then we have the following
properties.

Theorem 1.3.2 (Properties of conditional expectation).

1. E (E[X|G]) = E(X).

2. If X is G-measurable, then E(X|G) = X a.s..

3. (Tower property) If H ⊆ G, then

E (E[X|G]|H) = E(X|H) a.s.. (1.3.1)

4. If Z is a bounded G-measurable random variable, then

E(ZX|G) = ZE(X|G) a.s..

5. If H is independent of σ(σ(X),G), then

E(X|σ(G,H)) = E(X|G) a.s..

We will now give the definition of what it means for a stochastic process to
be a martingale with respect to some filtration, as in Chapter 10 of [16].

Definition 1.3.2 (Filtration). A filtration is a family of σ-algebras
{Fn : n = 0, 1, . . . } such that

F0 ⊆ F1 ⊆ · · · ⊆ F .

Definition 1.3.3. We say that a stochastic process {Xn} is adapted to the
filtration (Fn) if Xn is Fn-measurable for all n = 0, 1, 2, . . . .

Definition 1.3.4. [Martingale] A stochastic process {Xn} is a martingale
with respect to (Fn) if

1. {Xn} is adapted to (Fn),

2. Xn ∈ L1 for each n = 0, 1, 2, . . . , and

3. E(Xn|Fn−1) = Xn−1 a.s., for all n ≥ 1.

When it is clear which filtration we are working with, we will just say that
{Xn} is a martingale.
An easy consequence of the definition of a martingale is the following lemma.

Lemma 1.3.1. Let {Xn} be a martingale with respect to (Fn). Then

E(Xn) = E(X0)

for all n ∈ N.
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We now see that that the above result can, under some conditions, be ex-
tended to the case where n is a random time.

Definition 1.3.5 (Stopping time). We say that a non-negative integer-valued
random variable T is a stopping time with respect to a filtration (Fn) if
{T ≤ n} ∈ Fn for every n = 0, 1, 2, . . . .

The following theorem is a special case of the optional stopping theorem
which is given in Chapter 10 of [16].

Theorem 1.3.3 (Optional stopping theorem). Let (Fn) be a filtration, T a
stopping time and {Xn} a martingale. Then we have that XT ∈ L1 and
E(XT ) = E(X0), if one of the following conditions holds.

1. T is bounded;

2. {Xn} is bounded and T is almost surely finite;

3. E(T ) <∞ and ∃K ≥ 0 such that

|Xn(ω)−Xn−1(ω)| ≤ K

for every n ∈ N and ω ∈ Ω.

We will apply the optional stopping theorem several times in our second
proof of a central limit theorem for Markov chains in Section 3.3.
Before closing this preliminary chapter, we give one more definition which will
be of use to us later in this report. This comes from Section 5.1 of [15].

Definition 1.3.6. [Martingale difference] Let {Xn} be a martingale with re-
spect to a filtration (Fn). Define Yn+1 := Xn+1 −Xn for all n ∈ N. Then we
say that the process {Yn} is a martingale difference.

Lemma 1.3.2. Let (Fn) be a filtration. A stochastic process {Yn} is a mar-
tingale difference with respect to (Fn) if and only if {Yn} satisfies the first two
conditions in Definition 1.3.4 and, for all n ∈ N,

E(Yn+1|Fn) = 0 a.s. (1.3.2)

In Section 3.1, we prove a central limit theorem for martingale differences
and then go on to deduce a central limit theorem for Markov chains in the
following section.
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Chapter 2

Ergodicity of Stochastic
Processes

In this chapter we prove the ergodic theorems, which concern convergence of
random variables. These theorems will play a key role in proving the central
limit theorems in the next chapter. We will define what it means for a probabil-
ity measure or a stochastic process to be ergodic, and we will see that ergodicity
is a sufficient condition for the limit in the ergodic theorems to be a constant.

2.1 Measure-Preserving Transformations

In this section we relate stationary stochastic processes to measure-preserving
transformations, following Varadhan in [15].
A stationary stochastic process is a sequence of random variables {Xn}n∈N
such that the joint distribution of (Xn1

, Xn2
, . . . , Xnk) is the same as the joint

distribution of (Xn1+m, Xn2+m, . . . , Xnk+m) for any n1, n2, . . . , nk,m ∈ Z.
Let Ω be the space of sequences which take values in some measurable space
(X,B) and let F be the product σ-field. Under certain consistency conditions,
we can construct a measure P on (Ω,F) which describes the evolution of the
process {Xn}n∈N over time.
We can define the shift T on Ω by (Tω)(n) = ξn+1, where ω(n) = ξn. Then
stationarity of the process is equivalent to invariance of P with respect to T ; i.e.
PT−1 = P.
In this case, we call T a measure-preserving transformation for P. We also
say that P is an invariant measure for T .
We will study general measure-preserving transformations and will later apply
our results to stationary stochastic processes.

Let (Ω,F ,P) be a probability space and T a measure-preserving transforma-
tion for P. We will prove some general facts about these transformations, which
are stated in Section 6.1 of [15], by relating T to a linear transformation on the
space of functions on Ω, as described by the following lemma.
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Lemma 2.1.1. The measure-preserving transformation T : Ω→ Ω induces a
linear transformation U on the space of functions on Ω by

(Uf)(ω) = f(Tω).

Proof. Clearly

U(αf +βg)(ω) = (αf +βg)(Tω) = αf(Tω) +βg(Tω) = α(Uf)(ω) +β(Ug)(ω).

We will now study the transformation U . First we show that U is an
isometry on the Lp spaces for 1 ≤ p ≤ ∞. By definition (see [9]), U is an
isometry on a normed space if it preserves the norm.

Lemma 2.1.2. U is an isometry on Lp for 1 ≤ p <∞.

Proof. We just use the definition of U and invariance of T with respect to P.
Let p ∈ [1,∞) and f ∈ Lp. Then∫

Ω

|f(ω)|p dP(ω) =

∫
Ω

|f(Tω)|p dP(Tω)

=

∫
Ω

|f(Tω)|p dP(ω) =

∫
Ω

|(Uf)(ω)|p dP(ω).

Remark 2.1.1. U is also an isometry on L∞.

Proof. For any ω0 ∈ Ω,

|Uf(ω0)| = |f(Tω0)| ≤ sup
ω∈Ω
|f(ω)| = ‖f‖∞ .

So Uf ∈ L∞ and ‖Uf‖∞ ≤ ‖f‖∞. But ∃ω1 ∈ Ω such that Tω1 = ω1 and so
|Uf(ω1)| = |f(ω1)|.
Thus ‖Uf‖∞ = ‖f‖∞.

Next we show that U is invertible and we find its inverse.

Lemma 2.1.3. U is invertible and the inverse of U is the transformation in-
duced by T−1, the inverse of T .

Proof. Define U−1 by

(U−1f)(ω) = f(T−1ω) for any function f on Ω.

Then
(UU−1f)(ω) = (U−1f)(Tω) = f(T−1Tω) = f(ω).

So U−1 is the inverse of U .
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If we consider U as a transformation on L2 and define the usual inner product

on L2 by 〈f, g〉 =

∫
Ω

f(ω)g(ω)dP(ω), for any f, g ∈ L2, then we can show that

U is unitary. To define what it means for a transformation to be unitary, we
introduce the Hilbert adjoint operator for a transformation A, which we
denote A∗. These definitions are taken from Sections 3.9 and 3.10 of [9].
A∗ is defined to be the transformation on L2 such that for any f, g ∈ L2,

〈Af, g〉 = 〈f,A∗g〉 .

Then A is unitary if A∗ = A−1.

Remark 2.1.2. An equivalent condition for A to be unitary is that, for any
f, g ∈ L2,

〈Af,Ag〉 = 〈f, g〉 .

For a simple proof of this, see Section 3.10 of [9].

We now use the above remark to prove that U is unitary. This property will
be useful for us in the proof of the L2 ergodic theorem.

Lemma 2.1.4. U is unitary in L2, with inner product defined by

〈f, g〉 =

∫
Ω

f(ω)g(ω)dP(ω); i.e. U preserves this inner product.

Proof. Using the definition of U and invariance of T with respect to P, we get

〈Uf,Ug〉 =

∫
f(Tω)g(Tω)dP(ω) =

∫
f(Tω)g(Tω)dP(Tω)

=

∫
f(ω)g(ω)dP(ω)

= 〈f, g〉 .

Before moving on to prove the ergodic theorems, we note two more properties
of U which will be of use to us.

Remark 2.1.3. U1 = 1, where 1(ω) ≡ 1, ∀ω ∈ Ω, since

(U1)(ω) = 1(Tω) = 1.

Remark 2.1.4. U(fg) = U(f)U(g), for any functions f, g on Ω, since

U(fg)(ω) = (fg)(Tω) = f(Tω)g(Tω) = (Uf)(ω)(Ug)(ω).
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2.2 Ergodic Theorems

Let (Ω,F ,P) be a probability space and T a measure-preserving transformation
for P. Define the invariant σ-field by I = {A ⊆ Ω : TA = A}.
The following theorems from [15] are key results in the proof of the central
limit theorems of the next chapter. The first of these is alternately called the
Individual Ergodic Theorem or Birkhoff’s Theorem.

Theorem 2.2.1 (The Individual Ergodic Theorem). For any f ∈ L1(P), the
limit

lim
n→∞

f(ω) + f(Tω) + · · ·+ f(Tn−1ω)

n
= g(ω)

exists for P-almost all ω.
Moreover, the limit g(ω) is given by the conditional expectation

g(ω) = EP(f |I).

We will first prove the Mean Ergodic Theorems, which concern Lp con-
vergence. We will then develop the tools we need to complete the proof of the
Individual Ergodic Theorem, following Varadhan in [15].

Theorem 2.2.2 (Mean Ergodic Theorems). Let p ∈ [1,∞). Then for any
f ∈ Lp(P), the limit

lim
n→∞

f(ω) + f(Tω) + · · ·+ f(Tn−1ω)

n
= g(ω)

exists in Lp(P).
Moreover, the limit g(ω) is given by the conditional expectation

g(ω) = EP(f |I).

Proof. We first consider p = 2.
Define H = L2 and

H0 = {f : f ∈ H,Uf = f} = {f : f ∈ H, f(Tω) = f(ω)} ,

where U is the operator induced by T .
We claim that H0 is a closed non-trivial subspace of H.
Since c ∈ H0 for any constant c, H0 6= ∅.
Suppose that f, g ∈ H0, α ∈ R. Then f +g, αf ∈ H, by an elementary property
of Lp spaces, and we have

U(f + g) = Uf + Ug = f + g

and U(αf) = αUf = αf,

by linearity of U. So f + g, αf ∈ H0.
We have that H0 is a subspace of H. Now suppose that (fj) is a sequence in
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H0 with L2 limit f . Then

Uf(ω) = f(Tω) = lim
j→∞

fj(Tω)

= lim
j→∞

Ufj(ω) = lim
j→∞

fj(ω)

= f(ω).

Thus H0 is closed. This proves our claim.
Now for each n ∈ N, define An : H → R by

Anf =
f + Uf + · · ·+ Un−1f

n
.

Then

‖Anf‖2 =
1

n

∥∥f + Uf + · · ·+ Un−1f
∥∥

2

≤ 1

n

(
‖f‖2 + ‖Uf‖2 + · · ·+

∥∥Un−1f
∥∥

2

)
by Minkowski’s inequality (1.1.3)

= ‖f‖2 since U is an L2 isometry by Lemma 2.1.2.

(2.2.1)

Hence ‖An‖ ≤ 1.
Suppose that f ∈ H0, so that Uf = f , and let n ∈ N. Then

Anf =
f + Uf + · · ·+ Un−1f

n
=
f + f + · · ·+ f

n
= f.

So clearly we have that ∀f ∈ H0,

Anf → f in H and almost surely.

Now suppose that f ∈ H⊥0 .
We claim that H⊥0 = Range (I − U).
Since U is unitary by Lemma 2.1.4, we have the equivalence

Uf = f ⇔ U−1f = U∗f = f.

Thus
H0 = {f : f ∈ H, (I − U∗)f = f} .

We need the following remark to prove our claim.

Remark 2.2.1. The statement of Exercise 6.1 of [15] tells us that for any
bounded linear transformation A on H, we have

RangeA = {f : f ∈ H,A∗f = 0}⊥ .

We do not prove this here, since this would require more discussion of Hilbert
spaces and Hilbert adjoint operators, as could be found for example in Chapter
3 of [9].
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We can see that I − U is linear and bounded. Thus, by the above remark,

H⊥0 = {f : f ∈ H, (I − U∗)f = f}⊥ = Range (I − U),

as we claimed.
Therefore, we can approximate any f ∈ H⊥0 by a sequence (f j) in Range (I − U)

such that
∥∥f − f j∥∥

2

j→∞−−−→ 0.

For each j ∈ N, ∃gj ∈ H such that f j = (I − U) gj and thus

Anf
j =

gj − Ugj + U
(
gj − Ugj

)
+ · · ·+ Un−1

(
gj − Ugj

)
n

=
gj − Ugj + Ugj − U2gj − · · ·+ Un−1gj − Ungj

n

=
gj − Ungj

n
.

Hence ∥∥Anf j∥∥2
=

∥∥∥∥gj − Ungjn

∥∥∥∥
2

≤ 1

n

∥∥gj∥∥
2

+
∥∥Ungj∥∥

2

=
2
∥∥gj∥∥

2

n
≤ 2

n
sup
j∈N

∥∥gj∥∥
2
.

(2.2.2)

By the triangle inequality,

‖Anf‖2 =
∥∥An(f − f j) +Anf

j
∥∥

2
≤
∥∥An(f − f j)

∥∥
2

+
∥∥Anf j∥∥2

.

As we noted in (2.2.1), by Minkowski’s inequality,
∥∥An(f − f j)

∥∥
2
≤
∥∥f − f j∥∥

2
.

Therefore

‖Anf‖2 ≤
∥∥f − f j∥∥

2
+

2

n
sup
j∈N

∥∥gj∥∥
2
.

Taking j →∞, we get that

0 ≤ ‖Anf‖2 ≤
2

n
sup
j∈N

∥∥gj∥∥
2

n→∞−−−−→ 0.

Hence

Anf
L2

−−−−→
n→∞

0 ∀f ∈ H⊥0 .

If we denote by Π the orthogonal projection from H into H0, as defined in
Section 3.3 of [9] - i.e. Π : H → H0 satisfies

Πf = g, where g ∈ H0 is such that f = g + h, for some h ∈ H⊥0

- then

Πf =

{
f if f ∈ H0

0 if f ∈ H⊥0 ,
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and so
Anf → Πf in L2 for any f ∈ H.

We have a limit in L2 and next we need to show that this limit is in fact the
conditional expectation claimed.
Let f ∈ H. It can be shown that Πf = EP(f |I), using a theorem from Section
9.5 of [9], as follows.
EP(·|I) is an orthogonal projection if and only if for f, g ∈ H,

EP(EP(f |I)|I) = EP(f |I) and
〈
EP(f |I), g

〉
=
〈
f,EP(g|I)

〉
.

Let f, g ∈ H. Then the first equality which we require is clear from the tower
property of conditional expectation (1.3.1), and we arrive at the second equality
as follows:〈

EP(f |I), g
〉

= EP [EP(f |I)g
]

= E
(
EP [EP(f |I)g|I

])
= E

(
EP(f |I)EP (g|I)

)
as EP(f |I) is I-measurable

= EP [EP(g|I)f
]

by symmetry

=
〈
f,EP(g|I)

〉
.

So EP(·|I) is an orthogonal projection.
Since EP(f |I) is I-measurable, EP(f |I) ∈ H0 for all f ∈ H. In particular, for
f ∈ H0, EP(f |I) = f . So EP(·|I) : H → H0 is surjective. Therefore EP(·|I) is
the orthogonal projection from H into H0. Thus, for f ∈ H, EP(f |I) = Πf .
We have the required result for L2 and we now prove the mean ergodic theorems
for general Lp.
Note that the conditional expectation operator is well-defined on Lp, so Π is an
operator of norm one on Lp, for 1 ≤ p ≤ ∞.
First suppose that f ∈ L∞. Then ‖Anf‖∞ ≤ ‖f‖∞, by the triangle inequality
for the L∞ norm.
Since we have shown that Anf → Πf in L2, we also have that Anf → Πf in
measure, by Theorem 1.1.4. Thus we can use the bounded convergence theorem
for convergence in measure (Theorem 1.1.6) to get that

‖Anf −Πf‖p
n→∞−−−−→ 0 for any p ∈ [1,∞). (2.2.3)

Now let p ∈ [1,∞) and f ∈ Lp. We know that L∞ is dense in Lp.
By Minkowski’s inequality (1.1.3), we see that ‖Ang‖p ≤ ‖g‖p for any g ∈ Lp.
Let (fj) be a sequence of functions in L∞ which approximate f in Lp; i.e.
‖f − fj‖p → 0 as j →∞. Fix j ∈ N. Then

0 ≤ ‖Anf −Πf‖p ≤ ‖Anf −Anfj‖p + ‖Anfj −Πfj‖p + ‖Πfj −Πf‖p
≤ ‖f − fj‖p + ‖Anfj −Πfj‖p + ‖fj − f‖p
n→∞−−−−→ 2 ‖fj − f‖p by (2.2.3).

(2.2.4)
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By definition, ‖f − fj‖p → 0 as j →∞. Therefore, by letting j →∞ in (2.2.4),
we have

‖Anf −Πf‖p
n→∞−−−−→ 0,

as required.

The proof of the almost sure convergence in the individual ergodic theorem is
based on an inequality which we will be able to prove by means of the following
theorem from [15].

Theorem 2.2.3 (Maximal Ergodic Theorem). Let f ∈ L1(P) and, for n ≥ 1,
define

E0
n :=

{
ω : sup

1≤j≤n

(
f(ω) + f(Tω) + · · ·+ f(T j−1ω)

)
≥ 0

}
.

Then ∫
E0
n

f(ω)dP ≥ 0.

Proof. Let hn be the function defined by

hn(ω) := sup
1≤j≤n

(
f(ω) + f(Tω) + · · ·+ f(T j−1ω)

)
= f(ω) + max {0, hn−1(Tω)}
= f(ω) + h+

n−1(Tω),

where we define h+
n (ω) := max {0, hn(ω)}.

Note that for any ω ∈ Ω,

h+
n (ω) ≥ 0,

and h+
n−1(ω) ≤ h+

n (ω).

On E0
n, hn(ω) = h+

n (ω) ≥ 0, ∀ω, so

f(ω) = hn(ω)− h+
n−1(Tω)

= h+
n (ω)− h+

n−1(Tω), ∀ω ∈ E0
n.

Hence∫
E0
n

f(ω)dP =

∫
E0
n

h+
n (ω)dP−

∫
E0
n

h+
n−1(Tω)dP

≥
∫
E0
n

h+
n (ω)dP−

∫
E0
n

h+
n (Tω)dP

=

∫
E0
n

h+
n (ω)dP−

∫
T (E0

n)

h+
n (ω)dP, by invariance of T

≥ 0,

since for any integrable function h(ω),

∫
E

h(ω)dP is largest when

E = {ω : h(ω) ≥ 0}.
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We can now apply this theorem to prove the following inequalities which are
adapted from Lemma 6.3 of [15].

Lemma 2.2.1. Let f ∈ L1(P), l > 0 and Ẽn =

{
ω : sup

1≤j≤n
(Ajf)(ω) ≥ l

}
.

Then

P(Ẽn) ≤ 1

l

∫
Ẽn

f(ω)dP.

Proof. We have that

Ẽn =

{
ω : sup

1≤j≤n

f(ω) + f(Tω) + · · ·+ f(T j−1ω)

j
≥ l
}

=

{
ω : sup

1≤j≤n

(f(ω)− l) + (f(Tω)− l) + · · ·+
(
f(T j−1ω)− l

)
j

≥ 0

}
.

Thus, by the maximal ergodic theorem (Theorem 2.2.3),∫
Ẽn

(f(ω)− l) dP ≥ 0,

which is equivalent to ∫
Ẽn

f(ω)dP− lP(Ẽn) ≥ 0.

Rearranging gives us the required inequality.

Corollary 2.2.1. For any f ∈ L1(P) and l > 0,

P
(
ω : sup

j≥1
|(Ajf) (ω)| ≥ l

)
≤ 1

l

∫
|f(ω)| dP.

Proof. Let n ∈ N and define

En :=

{
ω : sup

1≤j≤n
|(Ajf)(ω)| ≥ l

}
.

If we also define

Ên :=

{
ω : sup

1≤j≤n
(Aj |f |)(ω) ≥ l

}
,

then we see that |(Ajf)(ω)| = Aj |f(ω)| for any ω ∈ Ω, by the triangle inequality,
and so

En ⊆ Ên.
We can now apply the previous lemma to get

P(En) ≤ P(Ên) ≤ 1

l

∫
Ên

|f | dP

≤ 1

l

∫
Ω

|f | dP.
(2.2.6)
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Now note that for any n ∈ N,

sup
1≤j≤n

|(Ajf)(ω)| ≤ sup
1≤j≤n+1

|(Ajf)(ω)| ,

which implies that
En ⊆ En+1.

By monotonicity of the sequence of events (En), we have that

P
(

sup
j≥1
|(Anf)(ω)| ≥ l

)
= P

(
lim
n→∞

sup
1≤j≤n

|(Anf)(ω)| ≥ l
)

= P (∪∞n=1En)

= lim
n→∞

P(En)

≤ 1

l

∫
|f(ω)| dP by (2.2.6).

Now we are ready to prove the almost sure convergence in the individual
ergodic theorem, as in [15].

Proof of the Individual Ergodic Theorem. Fix f ∈ L1(P).
Note that the set D := {f1 + f2 : f1 ∈ H0, f2 = (I − U)g, g ∈ L∞} is dense in
L1. We do not prove this fact here.
For each j ∈ N, let f j ∈ D be such that E

(∣∣f − f j∣∣)→ 0 as j →∞;

i.e.
(
f j
)

approximates f in L1. Fix j ∈ N. We claim that Anf
j converges

almost surely.
We observed in the proof of the mean ergodic theorems that we have almost
sure convergence for any f1 ∈ H0.
Now suppose g ∈ L∞ and let f2 = (I − U)g. Then, using (2.2.2),

‖Anf2‖∞ =

∥∥∥∥g − Ungn

∥∥∥∥
∞
≤
‖g‖∞ + ‖Ung‖∞

n
=

2 ‖g‖∞
n

n→∞−−−−→ 0.

So we also have almost sure convergence for f2.
Since f j ∈ D, for any fixed j, we have almost sure convergence for Anf

j as we
claimed.
Thus we have convergence for f as follows.
For fixed j, we see that

lim sup
n→∞

Anf − lim inf
n→∞

Anf = lim sup
n→∞

(
Anf

j −
[
Anf

j −Anf
])

− lim inf
n→∞

(
Anf

j −
[
Anf

j −Anf
])

≤ lim sup
n→∞

Anf
j − lim inf

n→∞
Anf

j

+ lim sup
n→∞

[
Anf

j −Anf
]

− lim inf
n→∞

[
Anf

j −Anf
]
.
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But, since Anf
j converges almost surely,

lim sup
n→∞

Anf
j = lim inf

n→∞
Anf

j a. s.. (2.2.7)

Also note that

lim sup
n→∞

[
Anf

j −Anf
]
− lim inf

n→∞

[
Anf

j −Anf
]
≤ 2 sup

n∈N

∣∣An (f j − f)∣∣ . (2.2.8)

So, putting everything together and applying the previous corollary, we arrive
at

0 ≤ P
(

lim sup
n→∞

Anf − lim inf
n→∞

Anf ≥ ε
)

= P
(

lim sup
n→∞

[
Anf

j −Anf
]
− lim inf

n→∞

[
Anf

j −Anf
]
≥ ε
)

by (2.2.7)

≤ P
(

sup
n∈N

∣∣An (f j − f)∣∣ ≥ ε

2

)
by (2.2.8)

≤ 2

ε
E
(∣∣An (f j − f)∣∣) by Corollary 2.2.1

≤ 2

ε
E
(∣∣f j − f ∣∣) j→∞−−−→ 0,

where the final inequality follows from the fact that ‖Ang‖1 ≤ ‖g‖1, for any
g ∈ L1. This is due to Minkowski’s inequality (1.1.3), as we noted in the proof
of the mean ergodic theorems.

If we now let ε → 0, we see that we have an almost sure limit for Anf as
n→∞.
By the result of the mean ergodic theorems, it must be the case that
lim
n→∞

Anf = EP(f |I) a.s..

We have shown almost sure and Lp convergence to a random variable, but
the theorems will be of use to us when the limit is a constant. We will see in the
following section that this is the case under certain conditions on the measure
we are working with.

2.3 Ergodicity of Measures

We now define what it means for an invariant measure to be ergodic and see
that this provides a sufficient condition for the limit in the ergodic theorems to
be a constant.

Definition 2.3.1. Let P be an invariant measure for a transformation T on Ω.
P is ergodic for T if P(A) ∈ {0, 1} for any invariant set A ∈ I.

Remark 2.3.1. Let T be a transformation on Ω and P an ergodic measure for
T . Then any function f which is invariant under T is almost surely constant
with respect to P.
Moreover, E (f |I) = EP(f).
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Proof. Let f be invariant under T . Then for any c ∈ R, {f(x) ≤ c} ∈ I. So by
ergodicity, each of these sets is trivial. Thus ∃c0 ∈ R such that f(x) = c0 for
P-almost every x. That is, f = EP(f) almost surely.
Thus E (f |I) = E

(
EP(f)|I

)
= EP(f).

This remark tells us that, when P is ergodic for T , the limit in the ergodic
theorems is a constant. We will use this result to prove the central limit theorems
in the next chapter.

Next, we look at a simple example of when we have an ergodic measure.

Theorem 2.3.1. Any product measure is ergodic for the shift.

To prove this, we need to appeal to a result known as Kolmogorov’s zero-one
law.
Let (Ω,F ,P) be a product space with Ω = . . .×Ω−2×Ω−1×Ω0×Ω1×Ω2×· · ·
and define Fi = σ {Ωj : j ≤ i}, for all i ∈ N.
Define the tail σ-algebra to be T := ∩n∈NTn, where Tn := σ(Fn,Fn+1, . . . ).

Lemma 2.3.1 (Kolmogorov’s zero-one law). For any A ∈ T , P(A) = 0 or 1.

Proof. Let A ∈ T ⊆ F and let ε > 0.
Then ∃a, b ∈ N with a < b and ∃A′ ∈ σ(Fa,Fa+1, . . . ,Fb) such that

P(A4A′) ≤ ε,

where we use the notation A4A′ = A \A′ ∪A′ \A.
Note that P(A) ≤ P(AA′) + P(A \A′) ≤ P(AA′) + P(A4A′). So

P(A)− P(AA′) ≤ ε. (2.3.1)

Since A ∈ T and A′ ∈ σ(Fa,Fa+1, . . . ,Fb), A and A′ are independent. There-
fore we have

P(A)− P(A)P(A′) ≤ ε.

Also, we have that |P(A)− P(A′)| ≤ ε, since P(A)−P(A′) ≤ P(A)−P(AA′) ≤ ε
by (2.3.1), and similarly P(A′)− P(A) ≤ ε. Therefore

|P(A)− P(A)P(A)| ≤ |P(A)− P(A)P(A′)|+ |P(A)P(A′)− P(A)P(A)|
= (P(A)− P(A)P(A′)) + P(A) |P(A)− P(A′)|
≤ ε+ P(A)ε ≤ 2ε.

So we have
P(A) (1− P(A)) ≤ 2ε.

Since ε > 0 is arbitrary, it follows that P(A) (1− P(A)) = 0. So either P(A) = 0
or P(A) = 1.

We can now prove the theorem.
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Proof of theorem. Let T be the shift, P a product measure and A ∈ I be an
invariant set. We need to show that P(A) ∈ {0, 1}.
By the definition of F , we can approximate A by sets An in the σ-field corre-
sponding to the coordinates from −n to n, in the sense that P(A4An) → 0 as
n→∞.
Equivalently, we can approximate T±2nA by T±2nAn, so by invariance of A, we
can approximate A by T±2nAn.
But T 2nAn is in the σ-field corresponding to coordinates from n to 3n and
T−2nAn in the σ-field corresponding to coordinates from−n to−3n. So T±2nAn
is independent of the σ-field corresponding to coordinates from −n to n.
Since T±2nAn approximates A, we see that A belongs to the tail σ-field. So, by
Kolmogorov’s zero-one law (Lemma 2.3.1), P(A) ∈ {0, 1}.

2.4 Structure of Invariant Measures

We are now going to apply the individual ergodic theorem (Theorem 2.2.1) to
prove a criterion for a probability measure to be ergodic. We will then see that
any invariant measure can be obtained by taking a weighted average of ergodic
measures.
Let T be a transformation on Ω and define

M := {P : T -invariant probability measure on (Ω,F)} .

Note that M is a convex set which may be empty.
For any convex set C, we say that x ∈ C is an extreme point of C (or x is
extremal) if it cannot be written as a non-trivial convex combination of two
other points in C.

Theorem 2.4.1. P ∈ M is ergodic for T if and only if it is an extreme point
of M.

Proof. Let P ∈M.
We first show that if P is not extremal, then P is not ergodic. Suppose that
P ∈M is not extremal.
Then ∃P1,P2 ∈M, a ∈ (0, 1) such that P1 6= P2 and

P = aP1 + (1− a)P2.

Suppose for a contradiction that P is ergodic. Then we have that, for any A ∈ I,
P(A) ∈ {0, 1}.
But

P(A) = 0⇔ P1 = P2 = 0, and similarly

P(A) = 1⇔ P1 = P2 = 1.

So P1 = P2 on I.
Next we show that this implies that P1 = P2 on F .
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Let f be a bounded F-measurable function. We will show that EP1(f(ω) =
EP2(f(ω)). Define E to be the set where the following limit exists:

h(ω) := lim
n→∞

1

n

(
f(ω) + f(Tω) + · · ·+ f(Tn−1ω)

)
.

By the individual ergodic theorem (Theorem 2.2.1), P1(E) = P2(E) = 1 and h
is I-measurable.
Since P1,P2 are invariant, we have, for i = 1, 2 and n ∈ N,∫

E

1

n

(
f(ω) + f(Tω) + · · ·+ f(Tn−1ω)

)
dPi

=

∫
E

1

n
(f(ω) + f(ω) + · · · f(ω)) dPi

=

∫
E

f(ω)dPi

= EPi(f(ω)), as Pi(E) = 1.

By the bounded convergence theorem (Theorem 1.1.5),∫
E

h(ω)dPi = lim
n→∞

∫
E

1

n

(
f(ω) + f(Tω) + · · ·+ f(Tn−1ω)

)
dPi

= EPi(f(ω)), for i = 1, 2.

We now use that h is I-measurable, P1 = P2 on I, and P1(E) = P2(E) to see
that

EP1(f(ω)) =

∫
E

h(ω)dP1 =

∫
E

h(ω)dP2 = EP2(f(ω)).

So we have that P1 = P2 on F . This is a contradiction.
Next we show the converse part of the theorem. Suppose that P is not ergodic.
Then ∃A ∈ I with 0 < P(A) < 1.
We can therefore define probability measures P1 and P2 by

P1(E) =
P(A ∩ E)

P(A)
and

P2(E) =
P(Ac ∩ E)

P(Ac)
.

Then we have

P1(TE) =
P(A ∩ TE)

P(A)

=
P(TA ∩ TE)

P(TA)
as A ∈ I

=
P(A ∩ E)

P(A)
by invariance of P.
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So P1 ∈M. Similarly, we can show that P2 ∈M.
Furthermore,

P = P(A)P1 + P(Ac)P2

= P(A)P1 + [1− P(A)]P2.

Therefore P is not extremal. This completes the proof.

The next theorem shows that any probability measure in the convex set M
- that is any invariant measure - can be obtained by taking a weighted average
of the extremal points of M - i.e. the ergodic measures.
We use the notation Me := {P : P ∈M,P extremal}.

Theorem 2.4.2. For any invariant measure P, there exists a probability mea-
sure µP on the set Me of ergodic measures such that

P =

∫
Me

QµPdQ.

To prove this we need the following lemma.

Lemma 2.4.1. Let P be a probability measure on (Ω,F) and, for each ω ∈ Ω,
define Pω by

Pω(E) := P (E|I) (ω) = E (1E |I) (ω), for any E ∈ F .

Suppose that P is invariant.
Then for P-almost every ω, Pω is invariant and ergodic.

Proof. We want to show that Pω(TA) = Pω(A)
∀A ∈ F , for almost all ω. Then we will have invariance of Pω for almost
all ω.

Let E ∈ I. It is enough to show that

∫
E

Pω(A)dP(ω) =

∫
E

Pω(TA)dP(ω), be-

cause Pω is I-measurable.
We have that ∫

E

Pω(A)dP(ω) =

∫
Ω

1EPω(A)dP(ω)

= EP (1EE (1A|I))

= EP (E (1E1A|I)) as E ∈ I
= EP (1E1A)

= P (E ∩A) .

(2.4.3)

On the other hand, by similar reasoning,∫
E

Pω(TA)dP(ω) = P(E ∩ TA)

= P(TE ∩ TA), by invariance of E ∈ I
= P(E ∩A), by invariance of P.
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So we have invariance and now need to establish ergodicity.
Again let E ∈ I. Then, repeating the argument in (2.4.3), we get∫

E

Pω(E)dP(ω) = P(E ∩ E) = P(E). (2.4.4)

But, since Pω(E) ≤ 1,∫
E

Pω(E)dP(ω) ≤
∫
E

dP(ω) = P(E),

with equality if and only if Pω(E) = 1 for P-almost every ω ∈ E.
Therefore, for the equality (2.4.4) to hold, we must have Pω(E) = 1 for
P-almost every ω ∈ E.
Repeating the same argument from (2.4.3) once more, we get∫

Ec
Pω(E)dP(ω) = P (E ∩ Ec) = 0.

So for P-almost every ω ∈ Ec, Pω = 0.
Thus for P-almost every ω ∈ Ω,

Pω(E) = 1{ω∈E} ∈ {0, 1} , ∀E ∈ I;

that is, Pω is ergodic for P-almost all ω.

Proof of Theorem. As a consequence of the lemma, we can view Pω as a map
Ω→Me. Take µP to be the image of P under this map.
From the definition of Pω, we have that

P =

∫
Ω

PωdP(ω).

By a change of variables we get

P =

∫
Me

QµPdQ

as required.

2.5 Stationary Markov Processes

In this section we are going to show how an ergodic Markov process can be de-
fined and how the theory from the previous sections can be applied to Markov
processes, following Varadhan in Section 6.3 of [15].
Let (X,B) be a measurable space and let (Ω,F) be the space of sequences which
take values in X with the product σ-field.
Let {Xn} be a stochastic process which takes values in the state space X.
For any m,n ∈ Z with m < n, define Fmn = σ {Xj : m ≤ j ≤ n}. Also define
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Fn = σ {Xj : j ≤ n} and Fm = σ {Xj : j ≥ m}.
As we noted in the opening discussion of Section 2.1, we can, under certain
consistency conditions, construct a probability measure P on (Ω,F), which de-
scribes the evolution of {Xn} over time. We assume from now on that these
conditions are satisfied. Further discussion of these conditions can be found
in [15].
We can then transfer all of the definitions and results from the previous section
on measure-preserving transformations by taking the measure to be P and the
transformation T to be the shift.
Suppose that {Xn} is stationary; i.e. P is an invariant measure for T .

Definition 2.5.1. We say that {Xn} is an ergodic stochastic process if P
is an ergodic measure, as defined in Definition 2.3.1, for the shift T .

In particular, we want to consider Markov processes.
The measure P on (Ω,F) defines a Markov process with transition probabilities
given by Π if, for any n ∈ N ∪ {0} and A ∈ B,

P {Xn+1 ∈ A|Fn} = Π(Xn, A) P-almost surely,

whenever this measure exists and is unique.
The following theorem tells us that whenever the transition probabilities are

independent of time n, we have the required existence and uniqueness.

Theorem 2.5.1. Let P be a stationary Markov process with given transition
probability Π.
Then the one-dimensional marginal distribution µ, given by µ(A) = P(Xn ∈ A)
(independent of time by stationarity), is Π-invariant; i.e.

µ(A) =

∫
Π(x,A)µ(x)dx for every A ∈ B.

Conversely, given any such µ, there exists a unique stationary Markov process
P with marginals µ and transition probability Π.

Proof. Suppose that P is a stationary Markov process with transition probabil-
ities given by Π. Then

µ(A) = P(Xn ∈ A) =

∫
Π(x,A)P(Xn−1 = x)dx

=

∫
Π(x,A)µ(x)dx, by stationarity.

Now take a measure µ on (X,B). Then a unique stationary Markov process
with marginals µ exists. We will not prove this fact, but refer the reader to
Section 4.4 of [15] for further discussion of this.

Let Π be a transition probability and define the set of invariant probability
measures for Π by

M̃ :=

{
µ : µ(A) =

∫
X

Π(x,A)µ(x)dx for all A ∈ B
}
.
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M̃ is clearly a convex set of probability measures. Denote the set of extremals
of M̃ by M̃e, as we defined at the beginning of Section 2.4, and note that this
set may be empty.
For each µ ∈ M̃, denote the Markov process with marginals µ by Pµ.
Since the map µ→ Pµ is linear, we have that

µ ∈ M̃e ⇒ Pµ ∈Me.

In fact we also have the opposite implication. To see this, we need the following
theorem.

Theorem 2.5.2. Let µ be an invariant measure for Π and P = Pµ the corre-
sponding stationary Markov process.
Let I be the invariant σ-field on Ω; I = {A : TA = A}, where T is the shift.
Then I ⊆ σ(X0), to within sets of P measure 0.

Proof. Let E ∈ I ⊆ F . Then, as in the proof of Theorem 2.3.1, we see that
there are sets En ∈ F−nn which approximate E. So for any k ∈ Z, T kEn
approximates T kE and, by invariance, approximates E. But T kEn ∈ Fk−nk+n . So
E ∈ T + := ∩m∈NFm and E ∈ T − := ∩n∈NFn. Thus

P (E|σ(X0)) = P (E ∩ E|σ(X0))

= P
(
E
[
E|T −

]
∩ E

[
E|T +

]
|σ(X0)

)
= P (E|σ(X0))P (E|σ(X0)) by conditional independence.

Therefore P (E|σ(X0)) = 0 or 1. It follows that E ∈ σ(X0) to within sets of P
measure 0.

We can now show that ergodicity of a Markov process is equivalent to er-
godicity of its marginals.

Theorem 2.5.3. Let µ be a measure on (X,B) and Pµ the corresponding
Markov process. Then the following equivalence holds:

µ ∈ M̃e ⇔ Pµ ∈Me.

Proof. For the first implication, suppose that µ is not extremal. Then
∃µ1, µ2 ∈ M̃ and ∃α ∈ R such that µ = αµ1 + (1− α)µ2.
Therefore, Pµ = αPµ1

+ (1− α)Pµ2
, by linearity. So Pµ is not extremal.

Now suppose that P is not extremal. Then P is not ergodic, by Theorem 2.4.1.
Therefore ∃E ∈ I such that 0 < P(E) < 1.
By the previous theorem, we can choose E such that E ∈ σ(X0). This means
that ∃A ⊆ X such that 0 < µ(A) < 1 and E = {X0 ∈ A}.
By invariance, for any n ∈ N, E = {Xn ∈ A}. Thus

E = {ω : Xn(ω) ∈ A, ∀n} .
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Suppose that there exists a subset of A with positive measure on which
Π(x,A) < 1. Then P(E) = 0, which is a contradiction. Thus for µ-almost
every x ∈ A,

Π(x,A) = 1 and Π(x,Ac) = 0.

Now we can write

µ(A) =

∫
Π(x,A)dµ(x)

=

∫
A

Π(x,A)dµ(x) +

∫
Ac

Π(x,A)dµ(x)

= µ(A) +

∫
Ac

Π(x,A)dµ(x).

So

∫
Ac

Π(x,A)dµ(x) = 0 and thus, for µ-almost every x ∈ Ac,

Π(x,A) = 0 and Π(x,Ac) = 1.

For any measurable set B we have that

µ(B) = µ(B|A)µ(A) + µ(B|Ac)µ(Ac), by the law of total probability

= µ(B|A)µ(A) + µ(B|Ac)[1− µ(A)].

We claim that both ν1 := µ(·|A) and ν2 := µ(·|Ac) are stationary distributions.
Then it will follow that µ is not extremal.

We want to show that νi(B) =

∫
Π(x,B)dνi(x) for all measurable sets B, for

i = 1, 2.
We have that∫

Π(x,B)dν1(x)

=

∫
A

Π(x,B)
dµ(x)

µ(A)
by a change of variables

=
1

µ(A)

∫
A

Π(x,A ∩B)dµ(x) since Π(x,A) = 1 for µ-a.e. x ∈ A

=
1

µ(A)

∫
Π(x,A ∩B)dµ(x) since Π(x,A) = 0 for µ-a.e. x ∈ Ac

=
1

µ(A)
µ(A ∩B) by stationarity of µ

= µ(B|A) = ν1(B).

By a very similar argument,∫
Π(x,B)dν2(x) = ν2(B).

This completes the proof.
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Remark 2.5.1. The measure µ is always an invariant measure for the transition
matrix Π of Pµ, by Theorem 2.5.1; i.e. µ is a stationary distribution of the
Markov chain Pµ.

Suppose that µ is the unique invariant measure for Π. Then M̃ = {µ} and so

clearly µ is an extremal point of the set M̃. Therefore, by Theorem 2.5.3, Pµ is
ergodic.

We can now prove a simple criterion for ergodicity of a stationary Markov
chain, in the case where the state space of the chain is finite.

Theorem 2.5.4. Let {Xn} be a stationary Markov chain which takes values on
a finite state space. Suppose that the chain is irreducible and aperiodic. Then
{Xn} is ergodic.

Proof. By Theorem 1.2.1, {Xn} has a unique stationary distribution. Therefore,
by Remark 2.5.1, {Xn} is ergodic.
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Chapter 3

Central Limit Theorems

In this chapter, we consider central limit theorems for ergodic stochastic pro-
cesses. We will see that a central limit theorem holds for ergodic Markov chains,
under some conditions. We present one proof, following [15], which will be a
consequence of a central limit theorem for square-integrable ergodic martingale
differences. We then present an alternative proof, following [13], for ergodic
Markov chains on a finite state space.
These theorems concern weak convergence, which we defined in Section 1.1 and

denote Xn
D−→ X, for random variables X,X1, X2, . . . .

3.1 The CLT for Martingale Differences

Let (X,B) be a measurable space and let (Ω,F) be the space of sequences which
take values in X with the product σ-field.
Let {ξj} be a sequence of square-integrable martingale differences with respect
to a filtration (Fn), as we defined in Definition 1.3.6, which take values in X.
Let P be the probability measure on (Ω,F) which describes the evolution of the
stochastic process {ξj}.
Suppose that {ξj} is stationary and ergodic; i.e. P is stationary and ergodic on
(Ω,F).

Remark 3.1.1. As stated in Section 6.5 of [15], it follows immediately from
the individual ergodic theorem (Theorem 2.2.1) and Remark 2.3.1 that we have
a strong law of large numbers,

ξ1 + ξ2 + · · ·+ ξn
n

→ 0 a.s..

We will now prove that we have the following central limit theorem, as shown
in [15].

Theorem 3.1.1.

Zn :=
ξ1 + ξ2 + · · ·+ ξn√

n

D−→ Z,
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where Z ∼ N
(
0, σ2

)
, for some σ > 0.

Proof. This proof follows Varadhan in [15], using the continuity lemma for char-
acteristic functions (Lemma 1.1.2).
The characteristic functions of Zn and Z are

φn(t) = E
[
exp

{
it
ξ1 + ξ2 + · · ·+ ξn√

n

}]
and φ(t) = exp

{
−σ

2t2

2

}
,

respectively.
Let us define

ψ(n, j, t) := exp

{
σ2t2j

2n

}
E
[
exp

{
it
ξ1 + ξ2 + · · ·+ ξj√

n

}]
.

We want to show that
|ψ(n, n, t)− 1| n→∞−−−−→ 0.

Then the result will follow by Lemma 1.1.2, the continuity lemma, since,

|ψ(n, j, t)− 1| n→∞−−−−→ 0 ⇒ φn(t)
n→∞−−−−→ φ(t).

First note that we can write

ψ(n, n, t)− 1 = ψ(n, n, t)− ψ(n, 0, t)

=

n∑
j=1

[ψ(n, j, t)− ψ(n, j − 1, t)] ,

so that we want to estimate the quantity

∆(n, t) :=

∣∣∣∣∣∣
n∑
j=1

[ψ(n, j, t)− ψ(n, j − 1, t)]

∣∣∣∣∣∣ .
We will estimate this quantity in three steps.
For any j ∈ {1, 2, . . . , n}, let us set Sj = ξ1 + ξ2 + · · · + ξj . Then the jth term
in the sum is

ψ(n, j, t)− ψ(n, j − 1, t)

= exp

{
σ2t2j

2n

}
E
[
exp

{
itSj√
n

}]
− exp

{
σ2t2(j − 1)

2n

}
E
[
exp

{
itSj−1√

n

}]
= exp

{
σ2t2j

2n

}(
E
[
exp

{
itSj−1√

n

}
exp

{
itξj√
n

}]
−E

[
exp

{
itSj−1√

n

}
exp

{
−σ2t2

2n

}])
= exp

{
σ2t2j

2n

}
E
[
exp

{
itSj−1√

n

}(
exp

{
itξj√
n

}
− exp

{
−σ2t2

2n

})]
.
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For our first estimate, we show, by means of a Taylor expansion, that we can
replace this term in the sum by

θ(n, j, t) := exp

{
σ2t2j

2n

}
E

[
exp

{
itSj−1√

n

}((
σ2 − ξ2

j

)
t2

2n

)]
.

Take t to be in an arbitrary finite interval, say |t| ≤ T . In this interval we have

|ψ(n, j, t)− ψ(n, j − 1, t)− θ(n, j, t)|

= exp

{
σ2t2j

2n

}
·

∣∣∣∣∣E
[

exp

{
itSj−1√

n

}(
exp

{
itξj√
n

}
− exp

{
−σ2t2

2n

}
−
(
σ2 − ξ2

j

)
t2

2n

)]∣∣∣∣∣
= exp

{
σ2t2j

2n

} ∣∣∣∣E [exp

{
itSj−1√

n

}
·

(
exp

{
itξj√
n

}
− exp

{
−σ2t2

2n

}
−
(
σ2 − ξ2

j

)
t2

2n
− itξj√

n

)]∣∣∣∣∣ ,
where the second equality is due to the martingale difference property
(1.3.2), as follows:

E
(

exp

{
itSj−1√

n

}
itξj√
n

)
=

it√
n
E
(
E
(

exp

{
itSj−1√

n

}
ξj |Fj−1

))
=

it√
n
E
(

exp

{
itSj−1√

n

}
E (ξj |Fj−1)

)
= 0, since E (ξj |Fj−1) = 0 by (1.3.2).

We now apply the triangle inequality for expectation and the fact that
|exp {is}| = 1 for s ∈ R to get

|ψ(n, j, t)− ψ(n, j − 1, t)− θ(n, j, t)|

≤ exp

{
σ2t2j

2n

}
· E

[∣∣∣∣exp

{
itSj−1√

n

}∣∣∣∣
∣∣∣∣∣exp

{
itξj√
n

}
− exp

{
−σ2t2

2n

}
−
(
σ2 − ξ2

j

)
t2

2n
− itξj√

n

∣∣∣∣∣
]

= exp

{
σ2t2j

2n

}
E

[∣∣∣∣∣exp

{
itξj√
n

}
− exp

{
−σ2t2

2n

}
−
(
σ2 − ξ2

j

)
t2

2n
− itξj√

n

∣∣∣∣∣
]

= exp

{
σ2t2j

2n

}
· E

[∣∣∣∣∣exp

{
itξj√
n

}
− 1− itξj√

n
+
ξ2
j t

2

2n
−
(

exp

{
−σ2t2

2n

}
− 1 +

σ2t2

2n

)∣∣∣∣∣
]
.
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Applying the triangle inequality again, and the fact that the exponential func-
tion is monotone increasing, we see that

|ψ(n, j, t)− ψ(n, j − 1, t)− θ(n, j, t)|

≤ exp

{
σ2t2j

2n

}
·

(
E

[∣∣∣∣∣exp

{
itξj√
n

}
− 1− itξj√

n
+
ξ2
j t

2

2n

∣∣∣∣∣
]

+

∣∣∣∣(exp

{
−σ2t2

2n

}
− 1 +

σ2t2

2n

)∣∣∣∣
)

≤ CTE

[∣∣∣∣∣exp

{
itξj√
n

}
− 1− itξj√

n
+
ξ2
j t

2

2n

∣∣∣∣∣
]

+ CT

∣∣∣∣(exp

{
−σ2t2

2n

}
− 1 +

σ2t2

2n

)∣∣∣∣ ,
with CT = exp

{
σ2T 2

2

}
.

This estimate is independent of j by stationarity.
We now take the following Taylor expansions up to the term linear in 1

n :

exp

{
itξj√
n

}
= 1 +

itξj√
n
−
ξ2
j t

2

2n
+ o

(
1

n

)
exp

{
−σ2t2

2n

}
= 1− σ2t2

2n
+ o

(
1

n

)
.

Substituting these into our equation above gives that for any j ∈ {1, 2, . . . , n}
and |t| ≤ T ,

|ψ(n, j, t)− ψ(n, j − 1, t)− θ(n, j, t)| = o

(
1

n

)
,

so that

sup
|t|≤T

1≤j≤n

|ψ(n, j, t)− ψ(n, j − 1, t)− θ(n, j, t)| = o

(
1

n

)

and

sup
|t|≤T

n∑
j=1

|ψ(n, j, t)− ψ(n, j − 1, t)− θ(n, j, t)| = n · o
(

1

n

)
.

As this is true for arbitrary T , we have that for any t ∈ R,

n∑
j=1

|ψ(n, j, t)− ψ(n, j − 1, t)− θ(n, j, t)| = n · o
(

1

n

)
n→∞−−−−→ 0. (3.1.3)
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It will now be enough to estimate

∣∣∣∣∣∣
n∑
j=1

θ(n, j, t)

∣∣∣∣∣∣, since

0 ≤ ∆(n, t) =

∣∣∣∣∣∣
n∑
j=1

[ψ(n, j, t)− ψ(n, j − 1, t)− θ(n, j, t)] +

n∑
j=1

θ(n, j, t)

∣∣∣∣∣∣
≤

n∑
j=1

|ψ(n, j, t)− ψ(n, j − 1, t)− θ(n, j, t)|+

∣∣∣∣∣∣
n∑
j=1

θ(n, j, t)

∣∣∣∣∣∣ .
(3.1.4)

In order to do this, we fix some large k ∈ Z and divide the set {1, 2, . . . , n} into
blocks of size k, with possibly an incomplete block at the end.
Let j ∈ Z and define r(j) ≥ 0 to be the integer such that
kr(j) + 1 ≤ j ≤ k(r(j) + 1). We see that r indexes the block of size k in which
we find any given j.
Define

θk(n, j, t) := exp

{
σ2t2kr(j)

2n

}
E

[
exp

{
itSkr(j)√

n

} (
σ2 − ξ2

j

)
t2

2n

]
.

Our second estimate will be on the θk(n, j, t). We will then show that the
θk(n, j, t) approximate θ(n, j, t) sufficiently well.
Fix r1 ≤ n

k . Then, for any j such that kr1+1 ≤ j ≤ k(r1+1), we have r(j) = r1.
Therefore∣∣∣∣∣∣
k(r1+1)∑
j=kr1+1

θk(n, j, t)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
k(r1+1)∑
j=kr1+1

exp

{
σ2t2kr1

2n

}
E

[
exp

{
itSkr1√

n

} (
σ2 − ξ2

j

)
t2

2n

]∣∣∣∣∣∣
≤ C(t)

1

n
E

∣∣∣∣∣∣
k(r1+1)∑
j=kr1+1

exp

{
itSkr1√

n

}(
σ2 − ξ2

j

)∣∣∣∣∣∣


= C(t)
1

n
E

∣∣∣∣exp

{
itSkr1√

n

}∣∣∣∣
∣∣∣∣∣∣
k(r1+1)∑
j=kr1+1

(
σ2 − ξ2

j

)∣∣∣∣∣∣


= C(t)
1

n
E

∣∣∣∣∣∣
k(r1+1)∑
j=kr1+1

(
σ2 − ξ2

j

)∣∣∣∣∣∣
 ,

where C(t) =
t2

2
exp

{
σ2t2

2

}
.

Set δ(k) :=
E
[∣∣∣∑k(r1+1)

j=kr1+1

(
σ2 − ξ2

j

)∣∣∣]
k

, which is independent of r1 by
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stationarity, so that ∣∣∣∣∣∣
k(r1+1)∑
j=kr1+1

θk(n, j, t)

∣∣∣∣∣∣ ≤ C(t)
k

n
δ(k).

We can use the L1 ergodic theorem from Theorem 2.2.2 to show that

δ(k)
k→∞−−−−→ 0 as follows. Since {ξj} is an ergodic process and E

(
ξ2
j

)
= σ2,

we have, setting r1 = 0,

δ(k) =
E
[∣∣∣∑k

j=1

(
σ2 − ξ2

j

)∣∣∣]
k

k→∞−−−−→E
(
σ2 − ξ2

j |I
)

=E
(
σ2 − ξ2

j

)
, by Remark 2.3.1

=0.

Therefore ∣∣∣∣∣∣
n∑
j=1

θk(n, j, t)

∣∣∣∣∣∣ ≤
bnk c∑
r=0

∣∣∣∣∣∣
k(r+1)∑
j=kr+1

θk(n, j, t)

∣∣∣∣∣∣
≤ n

k
C(t)

k

n
δ(k)

= C(t)δ(k)
k→∞−−−−→ 0.

(3.1.5)

Next, for our final estimate, we consider

n∑
j=1

|θk(n, j, t)− θ(n, j, t)| ≤ n sup
1≤j≤n

|θk(n, j, t)− θ(n, j, t)|

=
t2

2
sup

1≤j≤n

∣∣∣∣exp

{
σ2t2kr(j)

2n

}
E
[
exp

{
itSkr(j)√

n

}(
σ2 − ξ2

j

)]
− exp

{
σ2t2j

2n

}
E
[
exp

{
itSj−1√

n

}(
σ2 − ξ2

j

)]∣∣∣∣
=
t2

2
sup

1≤j≤n

∣∣∣∣exp

{
σ2t2kr(j)

2n

}
·E
[(
σ2 − ξ2

j

)
exp

{
itSkr(j)√

n

}
·

(
1− exp

{
σ2t2 (j − kr(j))

2n

}
exp

{
it
(
Sj−1 − Skr(j)

)
√
n

})]∣∣∣∣∣ .
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Then, by the triangle inequality, we can estimate

n∑
j=1

|θk(n, j, t)− θ(n, j, t)|

≤ t2

2
sup

1≤j≤n

{
exp

{
σ2t2kr(j)

2n

}
·E

[∣∣σ2 − ξ2
j

∣∣ ∣∣∣∣∣1− exp

{
σ2t2 (j − kr(j))

2n

}
exp

{
it
(
Sj−1 − Skr(j)

)
√
n

}∣∣∣∣∣
]}

≤ t2

2
exp

{
σ2t2

2

}
sup

1≤j≤n
E

[∣∣σ2 − ξ2
j

∣∣
·

∣∣∣∣∣1− exp

{
σ2t2 (j − kr(j))

2n

}
exp

{
it
(
Sj−1 − Skr(j)

)
√
n

}∣∣∣∣∣
]
.

(3.1.6)

We now claim that the expectation

E

[∣∣σ2 − ξ2
j

∣∣ ∣∣∣∣∣1− exp

{
σ2t2 (j − kr(j))

2n

}
exp

{
it
(
Sj−1 − Skr(j)

)
√
n

}∣∣∣∣∣
]

is periodic in j with period k.
Let m ∈ Z. First note that r(j+mk) = r(j) +m, by our definition of r, so that

Sj+mk−1 − Skr(j+mk) = Sj+mk−1 − Skr(j)+mk
= ξkr(j)+mk+1 + ξkr(j)+mk+2 + · · ·+ ξj+mk−1.

(3.1.7)

and

j +mk − kr(j +mk) = j +mk − kr(j)−mk = j − kr(j). (3.1.8)

Using (3.1.7), we write

E
[∣∣σ2 − ξ2

j+km

∣∣ ∣∣∣∣1− exp

{
σ2t2 ([j + km]− kr(j + km))

2n

}
· exp

{
it
(
Sj+km−1 − Skr(j+km)

)
√
n

}∣∣∣∣∣
]

= E
[∣∣σ2 − ξ2

j+km

∣∣ ∣∣∣∣1− exp

{
σ2t2 ([j + km]− kr(j + km))

2n

}
· exp

{
it
(
ξkr(j)+mk+1 + · · ·+ ξj+mk−1

)
√
n

}∣∣∣∣∣
]
.
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Then, by (3.1.8), we have

E
[∣∣σ2 − ξ2

j+km

∣∣ ∣∣∣∣1− exp

{
σ2t2 ([j + km]− kr(j + km))

2n

}
· exp

{
it
(
Sj+km−1 − Skr(j+km)

)
√
n

}∣∣∣∣∣
]

= E
[∣∣σ2 − ξ2

j+km

∣∣ ∣∣∣∣1− exp

{
σ2t2 (j − kr(j))

2n

}
· exp

{
it
(
ξkr(j)+mk+1 + · · ·+ ξj+mk−1

)
√
n

}∣∣∣∣∣
]

= E
[∣∣σ2 − ξ2

j

∣∣ ∣∣∣∣1− exp

{
σ2t2 (j − kr(j))

2n

}
· exp

{
it
(
ξkr(j)+1 + ξkr(j)+2 + · · ·+ ξj−1

)
√
n

}∣∣∣∣∣
]
,

where in the last line we use stationarity to shift all indices of ξ by −mk.
Thus we have periodicity, and so we need only consider j = 1, 2, . . . , k.
But, for 1 ≤ j ≤ k, we have that r(j) = 0, by definition of r.
Therefore

sup
1≤j≤n

E

[∣∣σ2 − ξ2
j

∣∣ ∣∣∣∣∣1− exp

{
σ2t2 (j − kr(j))

2n

}
exp

{
it
(
Sj−1 − Skr(j)

)
√
n

}∣∣∣∣∣
]

= sup
1≤l≤k

E

[∣∣σ2 − ξ2
l

∣∣ ∣∣∣∣∣1− exp

{
σ2t2 (l − kr(l))

2n

}
exp

{
it
(
Sl−1 − Skr(l)

)
√
n

}∣∣∣∣∣
]

= sup
1≤l≤k

E
[∣∣σ2 − ξ2

l

∣∣ ∣∣∣∣1− exp

{
σ2t2l

2n

}
exp

{
it (Sl−1)√

n

}∣∣∣∣] .
Substituting this back into (3.1.6), we obtain

n∑
j=1

|θk(n, j, t)− θ(n, j, t)| ≤ n sup
1≤j≤n

|θk(n, j, t)− θ(n, j, t)|

≤ t2

2
exp

{
σ2t2

2

}
sup

1≤l≤k
E
[∣∣σ2 − ξ2

l

∣∣ ∣∣∣∣1− exp

{
σ2t2l

2n

}
exp

{
itSl−1√

n

}∣∣∣∣]
= C(t) sup

1≤l≤k
E
(∣∣σ2 − ξ2

l

∣∣ ∣∣∣∣1− exp

{
σ2t2l

2n

}
exp

{
itSl−1√

n

}∣∣∣∣)
n→∞−−−−→ 0 by bounded convergence (Theorem 1.1.5).
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We now have

0 ≤

∣∣∣∣∣∣
n∑
j=1

θ(n, j, t)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
n∑
j=1

[θ(n, j, t)− θk(n, j, t)] +

n∑
j=1

θk(n, j, t)

∣∣∣∣∣∣
≤

n∑
j=1

|θ(n, j, t)− θk(n, j, t)|+

∣∣∣∣∣∣
n∑
j=1

θk(n, j, t)

∣∣∣∣∣∣ .
Fix k and let n→∞ to get

0 ≤ lim sup
n→∞

∣∣∣∣∣∣
n∑
j=1

θ(n, j, t)

∣∣∣∣∣∣ ≤ lim sup
n→∞

∣∣∣∣∣∣
n∑
j=1

θk(n, j, t)

∣∣∣∣∣∣ .
Now, letting k →∞ and recalling (3.1.5), we see that the right-hand side of the
above inequality tends to 0 and so

lim
n→∞

∣∣∣∣∣∣
n∑
j=1

θ(n, j, t)

∣∣∣∣∣∣ = 0. (3.1.9)

Hence, putting together (3.1.3), (3.1.4) and (3.1.9), we have that

∆(n, t)
n→∞−−−−→ 0,

as required.

We have proved a central limit theorem for square-integrable ergodic mar-
tingale differences. Next we will show that this result can be extended to a
larger class of processes, and in particular to certain stationary ergodic Markov
chains.

3.2 The CLT for Markov Chains I

We continue to work in the same setting as in the previous section. Thus we
let (X,B) be a measurable space and let (Ω,F) be the space of sequences which
take values in X with the product σ-field.
In this section our aim is to prove a central limit theorem for functions of ergodic
Markov chains, under some conditions, following the method used by Varadhan
in [15]. We start by consdering the following processes.
Let {Xn} be a stationary zero-mean process, adapted to a filtration (Fn), whose
path is described by the probability measure P on (Ω,F). If we can write
Xn = ξn+1 + ηn+1, where {ξn} is a square-integrable ergodic martingale differ-
ence and {ηn} is negligible in some sense, then we can show that we have a
central limit theorem for {Xn}. We formalise this in the following theorem,
which is a key step in proving a central limit theorem for Markov chains. This
result is stated but not proved in [15]. Here we provide a detailed proof.
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Theorem 3.2.1. Let {Xn} be a stationary process such that, for any n,
E (Xn) = 0 and Xn = ξn+1 + ηn+1, where {ξn} is an ergodic stationary se-
quence of square-integrable martingale differences and {ηn} satisfies

E

[( n∑
j=1

ηj

)2
]

= o(n). (3.2.1)

Then
X1 +X2 + · · ·+Xn√

n

D−→ Z,

where Z ∼ N
(
0, σ2

)
, for some σ > 0.

Proof. Fix a > 0. We need to show that

P
(∑n

i=1Xi√
n

≤ a
)

n→∞−−−−→ Φ(a),

where Φ is the distribution function of a N (0, σ2) random variable for some
σ > 0.
Now fix ε > 0 and n ∈ N. We claim that

P
(∑n

i=1Xi√
n

≤ a
)
≤ P

(∑n
i=1 ξi+1√
n

< a+ ε

)
− P

(∑n
i+1 ξi+1√
n

< a+ ε;
|
∑n
i=1 ηi+1|√
n

≥ ε
)

+ P
(
|
∑n
i=1 ηi+1|√
n

≥ ε
) (3.2.2)

and

P
(∑n

i=1Xi√
n

≥ a
)
≥ P

(∑n
i=1 ξi+1√
n

< a− ε
)

− P
(
|
∑n
i=1 ηi+1|√
n

≥ ε
)

+ P
(∑n

I=1 ξi+1√
n

+

∑n
I=1 ηi+1√

n
;
|
∑n
i=1 ηi+1|√
n

≥ ε
)
.

(3.2.3)

We prove the upper bound (3.2.2) using a lemma which we now formulate.

Lemma 3.2.1. For any a, ε > 0 and any random variables A,B, we have

P (A+B < a) ≤ P (A < a+ ε)− P (A < a+ ε; |B| ≥ ε) + P (|B| ≥ ε) .

Proof of lemma. By the law of total probability,

P (A+B < a) = P (A+B < a; |B| < ε) + P (A+B < a; |B| ≥ ε) . (3.2.4)
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Note that |B| < ε ⇒ −B < ε. So for the first term in the above equation we
have

P (A+B < a; |B| < ε) = P (A < a−B; |B| < ε)

≤ P (A < a+ ε : |B| < ε)

= P (A < a+ ε)− P (A < a+ ε; |B| ≥ ε) .

We can bound the second term in equation (3.2.4) by

P (A+B < a; |B| ≥ ε) ≤ P (|B| ≥ ε) ,

and so we have proved the lemma.

Note that

P
(∑n

i=1Xi√
n

≤ a
)

= P
(∑n

i=1 ξi+1√
n

+

∑n
i=1 ηi+1√
n

≤ a
)

The upper bound claimed in (3.2.2) now follows from the above lemma by
substituting

A =

∑n
i=1 ξi+1√
n

and (3.2.5a)

B =

∑n
i=1 ηi+1√
n

. (3.2.5b)

Now let us define an error term

α(n) := −P
(∑n

i+1 ξi+1√
n

< a+ ε;
|
∑n
i=1 ηi+1|√
n

≥ ε
)

+ P
(
|
∑n
i=1 ηi+1|√
n

≥ ε
)
,

so that the upper bound (3.2.2) implies that

P
(∑n

i=1Xi√
n

≤ a
)
≤ P

(∑n
i=1 ξi+1√
n

< a+ ε

)
+ α(n).

By Chebyshev’s inequality (1.1.4) and our assumption (3.2.1), we can see that

0 ≤ P
(
|
∑n
i=1 ηi+1|√
n

≥ ε
)
≤

E
(

[
∑n
i=1 ηi+1]

2
)

εn

n→∞−−−−→ 0,

and similarly,

0 ≤ P
(∑n

i+1 ξi+1√
n

< a+ ε;
|
∑n
i=1 ηi+1|√
n

≥ ε
)
≤ P

(
|
∑n
i=1 ηi+1|√
n

≥ ε
)

n→∞−−−−→ 0.

Hence α(n)
n→∞−−−−→ 0.

We now turn our attention to the second claim (3.2.3) and formulate another
lemma.

44



Lemma 3.2.2. For any a, ε > 0 and any random variables A,B, we have

P (A+B < a) ≥ P (A < a− ε)− P (|B| ≥ ε) + P (A+B < a; |B| ≥ ε) .

Proof of lemma. We note that |B| < ε⇒ −B > −ε. Therefore

P (A+B < a; |B| < ε) ≥ P (A < a− ε; |B| < ε)

= P (A < a− ε)− P (A < a− ε; |B| ≥ ε)
≥ P (A < a− ε)− P (|B| ≥ ε) .

So, by the law of total probability,

P (A+B < a) = P (A+B < a; |B| < ε) + P (A+B < a; |B| ≥ ε)
≥ P (A < a− ε)− P (|B| ≥ ε) + P (A+B < a; |B| ≥ ε) ,

and the lemma is proved.

We now make the same substitution as in (3.2.5) and the claimed lower
bound (3.2.3) follows from the lemma that we have just proved.
Next we define another error term

β(n) := −P
(∣∣∣∣∑n

i=1 ηi+1√
n

∣∣∣∣ ≥ ε)
+ P

(∑n
i=1 ξi+1√
n

+

∑n
i=1 ηi+1√
n

< a;

∣∣∣∣∑n
i=1 ηi+1√
n

∣∣∣∣ ≥ ε) ,
so that the lower bound (3.2.3) implies

P
(∑n

i=1Xi√
n

≥ a
)
≥ P

(∑n
i=1 ξi+1√
n

< a− ε
)

+ β(n).

In the same way as for α(n), we can see that β(n)
n→∞−−−−→ 0.

At this point we have shown that

P
(∑n

i=1 ξi+1√
n

< a− ε
)

+ β(n) ≤ P
(∑n

i=1Xi√
n

≤ a
)

≤ P
(∑n

i=1 ξi+1√
n

< a+ ε

)
+ α(n),

with α(n)
n→∞−−−−→ 0, β(n)

n→∞−−−−→ 0. Since {ξn} is an ergodic stationary sequence
of square-integrable martingale differences, we have a central limit theorem for
{ξn} by Theorem 3.1.1. Therefore ∃σ > 0 such that

P
(∑n

i=1 ξi+1√
n

< a− ε
)

n→∞−−−−→ Φ(a− ε) and

P
(∑n

i=1 ξi+1√
n

< a+ ε

)
n→∞−−−−→ Φ(a+ ε),
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where Φ is the distribution function of a random variable with distribution
N
(
0, σ2

)
.

Thus, by the sandwich rule,

Φ(a− ε) ≤ lim inf
n→∞

P
(∑n

i=1Xi√
n

≤ a
)
≤ lim sup

n→∞
P
(∑n

i=1Xi√
n

≤ a
)
≤ Φ(a+ ε).

Finally, we let ε→ 0 to see that the required limit exists and

lim
n→∞

P
(∑n

i=1Xi√
n

≤ a
)

= Φ(a).

The following remark from [15] helps us to find processes which satisfy the
conditions of the above theorem.

Remark 3.2.1. Suppose that {Zn} is a stationary square-integrable sequence.
Then if we define ηn := Zn−Zn+1 for each n, we have that E[(

∑n
j=1 ηj)

2] = o(n).

We provide a short proof of this fact.

Proof. Since {Zn} is square-integrable, the expectation we are interested in is
well defined. To prove the remark, we use Minkowski’s inequality (1.1.3) and
stationarity.

E

[( n∑
j=1

ηj

)2
]

= E
[
(Z1 − Zn+1)

2
]

= ‖Z1 − Zn+1‖22

≤
(
‖Z1‖22 + ‖Zn+1‖22

)2

by Minkowski’s inequality (1.1.3)

=
(

2 ‖Z1‖22
)2

by stationarity

= o(n).

Given a zero-mean stationary ergodic process {Xn}, we can, under some
conditions, construct {Zn} as in the remark above so that Xn + (Zn+1 − Zn) is
a square-integrable ergodic martingale difference.
We would then have Xn = ξn+1 + ηn+1 satisfying the conditions in Theorem
3.2.1 for a central limit theorem to hold.
Define

Zn :=

∞∑
j=0

E (Xn+j |Fn) , whenever this sum converges.

We will now show that if Zn exists and is square-integrable for each n, then
Xn + (Zn+1 − Zn) is a square-integrable ergodic martingale difference and, by
Theorem 3.2.1 and the previous remark, we have a central limit theorem for
{Xn}, as is claimed in [15].
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Lemma 3.2.3. Suppose that

Zn :=

∞∑
j=0

E (Xn+j |Fn)

exists and is square-integrable for each n.
Then we have a central limit theorem for {Xn}.

Proof. We have that

E [Zn+1|Fn] = E

 ∞∑
j=0

E [Xn+1+j |Fn+1] |Fn


=

∞∑
j=0

E [Xn+1+j |Fn] by the tower rule (1.3.1)

=

∞∑
j=0

E [Xn+j |Fn]− E [Xn|Fn]

= Zn −Xn.

Therefore

Xn = Zn − E [Zn+1|Fn]

= (Zn − Zn+1) + (Zn+1 − E [Zn+1|Fn]) .

If we define

ηn+1 := Zn − Zn+1 and

ξn+1 := Zn+1 − E [Zn+1|Fn] ,

then we have
Xn = ηn+1 + ξn+1.

By Remark 3.2.1, E[(
∑n
j=1 ηj)

2] = o(n). It is easy to see that {ξn} is ergodic
and square-integrable, so we only show that {ξn} is a martingale difference.
By Lemma 1.3.2, we just need to show that E [ξn+1|Fn] = 0. This follows
immediately from our definition of ξn:

E [ξn+1|Fn] = E [Zn+1 − E [Zn+1|Fn] |Fn]

= E [Zn+1|Fn]− E [Zn+1|Fn] = 0.

Therefore, by Theorem 3.2.1, we have a central limit theorem for {Xn}.

We now see under what conditions we can apply this lemma to the specific
case of a function of an ergodic Markov chain.
Let {Xn} be a stationary ergodic Markov chain, adapted to a filtration (Fn),
with state space X, transition probability Π and invariant measure µ. Let P be
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the stationary ergodic probability measure on (Ω,F) which describes the path
of this Markov process.
Let f be a square-integrable function with mean zero with respect to the invari-
ant measure. We will show that, under further conditions, we have a central
limit theorem for f(Xn). We use the method outlined above, following [15].

Theorem 3.2.2. Let f ∈ L2(X,B, µ) be such that
∑
x∈X f(x)µ(x) = 0. Sup-

pose that ∃U ∈ L2 such that [I −Π]U = f . Then∑n
j=1 f(Xj)√

n

D−→ Z,

where Z ∼ N
(
0, σ2

)
, with variance

σ2 = EPµ
[
(U(X1)− U(X0) + f(X0))

2
]
.

Proof. We want to show that Zn :=

∞∑
j=0

E (f(Xn+j)|Fn) is well-defined and

square-integrable for all n ∈ N ∪ {0}.
If Z0 can be defined, then we can define Zn using the shift operator T , via
Zn(ω) = Z0(Tnω). Thus we only need to show that Z0 is well-defined and
square-integrable.
For each n = 0, 1, 2, . . . , define Qnf by

(Qnf)(x) := E (f(Xn)|X0 = x) for all x ∈ X.

Then
(Qnf)(X0) = E (f(Xn)|F0) .

We claim that Qn(Qm)f = Qm+nf , for any n,m ∈ N ∪ {0}.
To prove this claim, let m,n ∈ N and let X̂k be a random variable with the
same distribution as Xk for each k ∈ N ∪ {0}. Then

(Qn(Qm)f)(X0) = E (Qmf(Xn)|F0)

= E
(
E
[
f(X̂m)|X̂0 = Xn

]
|F0

)
.

Note that starting a Markov chain from state Xn and letting it run for time m
is equivalent to considering a Markov chain which is in state Xn at time n and
letting it run up to time m+ n. Thus

E
[
f(X̂m)|X̂0 = Xn

]
= E [f(Xm+n)|Fn] ,

and so

(Qn(Qm)f)(X0) = E (E [f(Xm+n)|Fn] |F0)

= E [f(Xm+n)|F0] by the tower property (1.3.1)

= Qm+n,
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as claimed.
Therefore Qnf = Qn−1(Q1f) = Qn−2(Q2

1f) = · · · = Qn1f .
Fix x ∈ X. Then

(Q1f)(x) = E (f(X1)|X0 = x) =
∑
y∈X

f(y)Π(x, y)dy = (Πf)(x).

So we have that Q1 = Π and thus, whenever the sum converges,

∞∑
j=0

E (f(Xj)|F0) =

∞∑
j=0

(Qjf)(X0) =

∞∑
j=0

(Qj1f)(X0) =

∞∑
j=0

(Πjf)(X0).

Moreover, if the sum does converge,

∞∑
j=0

(Πjf)(X0) =
(

[I −Π]
−1
f
)

(X0),

since

[I −Π]

∞∑
j=0

Πjf =

∞∑
j=0

Πjf −
∞∑
j=0

Πj+1f = Π0f = f.

As in the hypothesis of the theorem, suppose that ∃U ∈ L2 such that
[I −Π]U = f . Then

Z0 =

∞∑
j=0

E (f(Xj)|F0) =
(
[I −Π]

−1
f
)
(X0) = U(X0) (3.2.8)

converges and we see that Zn ∈ L2 with

Zn =

∞∑
j=0

E (f(Xn+j)|F0) = U(Xn), ∀n = 0, 1, 2, . . . .

We now appeal to the previous lemma which gives us that, under the assump-
tions of the theorem, we have a central limit theorem:∑n

j=1 f(Xj)√
n

D−→ Z,

where Z ∼ N
(
0, σ2

)
, for some σ > 0.

To complete the proof of the theorem, we now need to calculate the variance
σ2.
Using our notation from earlier, we have that f(Xn) = ξn+1 + ηn+1, where

ξn+1 = U(Xn+1)− U(Xn) + f(Xn) is a martingale difference,

as shown in Lemma 3.2.3, and

E

[( n∑
j=1

ηj

)2
]

= o(n). (3.2.9)
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Then we have

Var

(∑n
j=1 f(Xj)√

n

)
=

1

n
Var

 n∑
j=1

ξj+1 +

n∑
j=1

ηj+1


=

1

n

Var

[
n∑
j=1

ξj+1

]
+ Var

[
n∑
j=1

ηj+1

]

+2 Cov

[
n∑
i=1

ξi+1,

n∑
j=1

ηj+1

] .

Note that all of the random variables ξj , ηj , j = 1, 2, . . . , have mean zero.
Therefore

Var

[
n∑
j=1

ηj+1

]
= E

[( n∑
j=1

ηj+1

)2
]

= o(n) by (3.2.9)

and

Var

[
n∑
j=1

ξj+1

]
= E

[( n∑
j=1

ξj+1

)2
]

=

n∑
j=1

E
[
ξ2
j+1

]
,

since for any i < j,

Cov [ξi, ξj ] = E [ξiξj ] = E (E [ξiξj |Fi]) = E (ξiE [ξj |Fi]) = 0,

as {ξk} is a martingale difference, and similarly for i > j.
Then, by stationarity, we see that

n∑
j=1

E
[
ξ2
j+1

]
= nE

[
ξ2
0

]
.

Putting these together, we get

Var

(∑n
j=1 f(Xj)√

n

)
=
nE
[
ξ2
0

]
n

+
o(n)

n
+

2

n
Cov

[ ∞∑
i=1

ξi+1,

∞∑
j=1

ηj+1

]
.

By the Cauchy-Schwarz inequality for covariance (1.1.6), we have that

0 ≤ 2

n

∣∣∣∣∣∣Cov

 ∞∑
i=1

ξi+1,

∞∑
j=1

ηj+1

∣∣∣∣∣∣ ≤ 2

n

√√√√√Var

 ∞∑
j=1

ξj+1


√√√√√Var

 ∞∑
j=1

ηj+1


=

2

n

√
nE [ξ2

0 ]
√
o(n)

= 2
√
E [ξ2

0 ]

√
o(n)

n

n→∞−−−−→ 0.
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Hence

Var

(∑n
j=1 f(Xj)√

n

)
n→∞−−−−→ E

[
ξ2
0

]
= EPµ

[
(U(X1)− U(X0) + f(X0))

2
]
.

That is
σ2 = EPµ

[
(U(X1)− U(X0) + f(X0))

2
]
.

3.3 The CLT for Markov Chains II

We now restrict ourselves to Markov chains on a finite state space and present
an alternative approach to proving a central limit theorem for stationary ergodic
Markov chains. This method allows us to arrive at the result more directly, but
we get a less general result here. What follows is adapted from handwritten
notes by Bálint Tóth [13].

Let X be a finite set and let (Ω,F) be the space of sequences which take
values in X, with the product σ-field.
Let {Xn} be a stationary, irreducible, aperiodic Markov chain on (Ω,F), adapted
to a filtration (Fn), with transition probabilities given by Π and state space X.
Because we are working on a finite state space, we can apply Theorem 2.5.4.
This tells us that {Xn} is ergodic, since it is a stationary, irreducible and ape-
riodic Markov chain on a finite state space.
Define P to be the stationary ergodic probability measure on (Ω,F) which de-
scribes the time-evolution of the process {Xn}.
Let f ∈ L2(X,B, µ) and suppose that f has mean zero under the unique sta-
tionary distribution µ; i.e.

∑
x∈X µ(x)f(x) = 0.

Define

Sn :=

n−1∑
k=0

f(Xk).

The main result of this section is the following central limit theorem:

Theorem 3.3.1.
Sn√
n

D−→ Z,

where Z ∼ N (0, σ2
1) for some σ2

1 > 0.

To prove this, we are going to prove a central limit theorem for another
quantity which approximates Sn, as in [13], and we will see that our desired
result then follows.
Set X0 = x0 deterministically.
We are going to use the fact that the times between consecutive returns to
x0 and the behaviour of the chain in these time intervals are i.i.d.. We define
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several random variables which we are going to work with.
Define the return times to x0 inductively by

R0 := 0

Rn+1 := min {k > Rn : Xk = x0} .

Then Rn is the nth return time to x0 after time 0 for each n ∈ N.
Next we define the length of the time interval between returns as

Tn := Rn −Rn−1, ∀n ∈ N

and the sum of the function of the Markov chain in each of these time intervals
by

Yn :=

Rn−1∑
k=Rn−1

f(Xk).

By the Markov property (1.2.1), we see that (Yn, Tn)n∈N are i.i.d..
We also have that all exponential moments of Yn and Tn are finite, as we are in
a finite state space.
Clearly E(Yn) = 0. Let us set σ2

0 = E
(
Y 2
n

)
and b = E (Tn).

Let the total number of visits to x0 (including the one at time 0) before time n
be given by

νn := min {k : Rk ≥ n} ∀n ∈ {0, 1, 2, . . . } .

Equivalently,

νn = min

{
k :

k∑
l=1

Tl ≥ n

}
.

Define Un := Rνn = min {m ≥ n : Xm = x0}, so that Un is the time of the first
return to x0 after time n. Then

Sn =

Un−1∑
k=0

f(Xk)−
Un−1∑
k=n

f(Xk).

Remark 3.3.1. As stated in [13], we can show that
∑Un−1
k=n f(Xk) is stochasti-

cally bounded, by a random variable independent of n. The idea of the proof is
that this sum is bounded by the sum of |f | taken between any two consecutive
return times. We do not provide details of this here.

We also have that

SUn =

Un−1∑
k=0

f(Xk) =

νn∑
k=1

Yk = S̃νn ,

where we define

S̃m :=
m∑
k=1

Yk.
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The proof of the main result will follow immediately from the central limit
theorem below. We next turn our attention to proving this theorem, which is
the main focus of [13].

Theorem 3.3.2. For S̃m :=
∑m
k=1 Yk,

S̃νn√
n

D−→ Z,

where Z ∼ N
(

0,
σ2
0

b

)
.

Proof. Define a function ψ : R→ R by

exp {ψ(λ)} := E (exp {λY1}) .

We claim that

ψ(λ) =
1

2
σ2

0λ
2 +O(λ3) as λ→ 0.

Note first that, by the series representation of the exponential function,

exp

{
1

2
σ2

0λ
2 +O(λ3)

}
= 1 +

[
1

2
σ2

0λ
2 +O(λ3)

]
+

1

2!

[
1

2
σ2

0λ
2 +O(λ3)

]2

+ · · ·

= 1 +
1

2
σ2

0λ
2 +O(λ3), as λ→ 0.

Now

exp {ψ(λ)} = E (exp {λY1}) = E
[
1 + λY1 +

1

2
λ2Y 2

1 +O(λ3)

]
= 1 + 0 +

1

2
λ2E(Y 2

1 ) +O(λ3)

= 1 +
1

2
λ2σ2

0 +O(λ3)

= exp

{
1

2
σ2

0λ
2 +O(λ3)

}
,

and taking logarithms proves our claim.

Next we claim that exp
{
λS̃k − ψ(λ)k

}
is a martingale.

Since we have finite exponential moments, the following calculation is all that
is needed to prove this:

E
[
exp

{
λS̃k+1 − ψ(λ) (k + 1)

}
|Fk
]

= E
[
exp

{
λS̃k − ψ(λ)k

}
exp {λYk+1 − ψ(λ)} |Fk

]
= exp

{
λS̃k − ψ(λ)k

}
E [exp {λYk+1}] exp {−ψ(λ)}

= exp
{
λS̃k − ψ(λ)k

}
exp {ψ(λ)} exp {−ψ(λ)}

= exp
{
λS̃k − ψ(λ)k

}
.
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Note that E
[
exp

{
λ
S̃νn√
n

}]
is the moment generating function of

S̃νn√
n

and

exp
{
λ2

2
σ2
0

b

}
is the moment generating function of a normal random variable

with mean zero and variance
σ2
0

b .

We want to show that E
[
exp

{
λ
S̃νn√
n

}]
n→∞−−−−→ exp

{
λ2

2
σ2
0

b

}
. Then Theorem

1.1.3 will give us the result of this theorem.
Let us fix n. Then νn is a stopping time and by the optional stopping

theorem (Theorem 1.3.3), for any θ ∈ R,

E
[
exp

{
θS̃νn − ψ(θ)νn

}]
= E

[
exp

{
θS̃0 − 0

}]
= e0 = 1. (3.3.2)

Therefore

E

[
exp

{
λ
S̃νn√
n

}]
= E

[
exp

{
λ√
n
S̃νn − ψ

(
λ√
n

)
νn

}
exp

{
ψ

(
λ√
n

)
νn

}]
= E

[
exp

{
λ√
n
S̃νn − ψ

(
λ√
n

)
νn

}
exp

{
σ2

0λ
2

2b

}]
+ E

[
exp

{
λ√
n
S̃νn − ψ

(
λ√
n

)
νn

}
·
(

exp

{
nψ

(
λ√
n

)
νn
n

}
− exp

{
σ2

0λ
2

2b

})]
= exp

{
σ2

0λ
2

2b

}
+ E

[
exp

{
λ√
n
S̃νn − ψ

(
λ√
n

)
νn

}
·
(

exp

{
nψ

(
λ√
n

)
νn
n

}
− exp

{
σ2

0λ
2

2b

})]
,

where the last line follows from (3.3.2) with θ = λ√
n

.

Call

En := E
[
exp

{
λ√
n
S̃νn − ψ

(
λ√
n

)
νn

}
·
(

exp

{
nψ

(
λ√
n

)
νn
n

}
− exp

{
σ2

0λ
2

2b

})]
,

so that

E

[
exp

{
λ
S̃νn√
n

}]
= exp

{
σ2

0λ
2

2b

}
+ En.

We will show that En is an error term which tends to 0 as n→∞.
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We can write

En = E
[
exp

{
λ√
n
S̃νn −

1

2
ψ

(
2λ√
n

)
νn

}
exp

{[
1

2
ψ

(
2λ√
n

)
− ψ

(
λ√
n

)]
νn

}
·

·
(

exp

{
nψ

(
λ√
n

)
νn
n

}
− exp

{
σ2

0λ
2

2b

})]
= e

σ20λ
2

2b E
[
exp

{
λ√
n
S̃νn −

1

2
ψ

(
2λ√
n

)
νn

}
· exp

{[
1

2
ψ

(
2λ√
n

)
− ψ

(
λ√
n

)]
νn

}
·
(

exp

{
nψ

(
λ√
n

)
νn
n
− σ2

0λ
2

2b

}
− 1

)]
= e

σ20λ
2

2b E
[
exp

{
λ√
n
S̃νn −

1

2
ψ

(
2λ√
n

)
νn

}
exp

{
1

2
ψ

(
2λ√
n

)
νn

}
·
(

exp

{
−σ

2
0λ

2

2b

}
− exp

{
−nψ

(
λ√
n

)
νn
n

})]
.

We are going to use the Cauchy-Schwarz inequality (1.1.5) to bound this
error. Note that for any random variables X,Y, Z ∈ L2, with Y 2, Z2 ∈ L2,

(E [XY Z])
4 ≤

(
E
[
X2
])2 (E [Y 2Z2

])2
by Cauchy-Schwarz

≤
(
E
[
X2
])2 E [(Y 2

)2]E [(Z2
)2]

applying Cauchy-Schwarz again

=
(
E
[
X2
])2 E [Y 4

]
E
[
Z4
]
.

(3.3.3)

Define the following random variables:

E1,n : = exp

{
λ√
n
S̃νn −

1

2
ψ

(
2λ√
n

)
νn

}
E2,n : = exp

{
1

2
ψ

(
2λ√
n

)
νn

}
E3,n : = exp

{
−σ

2
0λ

2

2b

}
− exp

{
−nψ

(
λ√
n

)
νn
n

}
.

Then

En = e
σ20λ

2

2b E [E1,n · E2,n · E3,n]

and it is easy to check that we can apply the inequality (3.3.3) to get

E4
n ≤ e

2σ20λ
2

b

(
E
[
E2

1,n

])2 E [E4
2,n

]
E
[
E4

3,n

]
.

We can now look at each term in the product individually. The constant e
σ20λ

2

2b

plays no role here.
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Using (3.3.2), we see that

E
[
E2

1,n

]
= E

[
exp

{
2λ√
n
S̃νn − ψ

(
2λ√
n

)
νn

}]
= 1.

In order to estimate the expectation of the other random variables in the error
term, we claim that we have a strong law of large numbers for νn:

νn
n

n→∞−−−−→ 1

b
a.s.. (3.3.5)

We prove this claim as follows. Since the {Tj} are i.i.d.,

1

J

J∑
j=1

Tj
J→∞−−−−→ E(T1) = b a.s.,

by the strong law of large numbers for i.i.d. random variables.
Note that we have the following equivalence, for any J ∈ N:

1

J

J∑
j=1

Tj ≥
n

J
⇔ J

n
≥ νn

n
.

Fix ε > 0 and define Jn :=

⌊
n

b+ ε

⌋
. Then Jn

n→∞−−−−→∞, so

1

Jn

Jn∑
j=1

Tj
n→∞−−−−→ b a.s..

But n
Jn

> b, so the event

 1

Jn

Jn∑
j=1

Tj ≥
n

Jn

 =

{
Jn
n
≥ νn

n

}
occurs for only

finitely many n almost surely.
Therefore ∃N ∈ N such that ∀n > N ,

νn
n
>

1

n

⌊
n

b+ ε

⌋
a.s..

Hence

lim inf
n→∞

νn
n
≥ 1

b+ ε
a.s..

Now define J̃n :=

⌊
n

b− ε

⌋
. Again we have

1

J̃n

J̃n∑
j=1

Tj
n→∞−−−−→ b a.s..
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But n
J̃n

< b, so the event

 1

J̃

J̃n∑
j=1

Tj <
n

J̃n

 =

{
J̃n
n
<
νn
n

}
occurs for only

finitely many n almost surely.
Therefore ∃M ∈ N such that ∀n > M ,

νn
n
<

1

n

⌊
n

b− ε

⌋
a.s..

Hence

lim sup
n→∞

νn
n
≤ 1

b− ε
a.s..

We now have

1

b+ ε
≤ lim inf

n→∞

νn
n
≤ lim sup

n→∞

νn
n
≤ 1

b− ε
a.s.,

so by taking the limit ε→ 0, we have that the desired limit exists and we have
proved our claim that

lim
n→∞

νn
n

n→∞−−−−→ 1

b
a.s..

We can now see that

E
[
E4

2,n

]
= E

[
exp

{
2nψ

(
2λ√
n

)
νn
n

}]
= E

[
exp

{
2n

(
1

2

σ2
0(2λ)2

n
+O

(
8λ3

n
3
2

))
νn
n

}]
n→∞−−−−→ e

4λ2σ20
b ,

by the strong law of large numbers for νn (3.3.5) and bounded convergence
(Theorem 1.1.5). By the same reasoning,

E
[
E4

3,n

]
= E

[(
exp

{
−λ

2σ2
0

2b

}
− exp

{
−nψ

(
λ√
n

)
νn
n

})4
]

= E

[(
exp

{
−λ

2σ2
0

2b

}
− exp

{
−n
(

1

2

σ2
0λ

2

n
+O

(
λ3

n
3
2

))
νn
n

})4
]

n→∞−−−−→ 0.

So

0 ≤ lim
n→∞

E4
n ≤ e

σ20λ
2

2b · 1 · e
4λ2σ20
b · 0 = 0.

Thus En → 0 as n→∞, and so we have

E

[
exp

{
λ
S̃νn√
n

}]
n→∞−−−−→ exp

{
λ2

2

σ2
0

b

}
.

Appealing to Theorem 1.1.3, we have that
S̃νn√
n

converges in distribution to a

mean zero normal random variable with variance
σ2
0

b , as required.
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The proof of the main theorem is now straight forward.

Proof of Theorem 3.3.1. Let Z be a random variable such that Z ∼ N
(

0,
σ2

0

b

)
.

We have that

Sn√
n

=
S̃νn√
n
− 1√

n

Un−1∑
k=n

f(Xk),

by the definitions of S and S̃. But by Remark 3.3.1, the sum in the second term
is stochastically bounded by a quantity which is independent of n, so

1√
n

Un−1∑
k=n

f(Xk)
D−→ 0.

Also, by the previous theorem,

S̃νn√
n

D−→ Z.

Hence we have
Sn√
n

D−→ Z,

as required.

We have proved that we have a central limit theorem and we now wish

to calculate the variance
σ2
0

b of the limiting distribution, again following Tóth
in [13]. The following remark is a key observation to facilitate the calculation
in [13].

Remark 3.3.2. Since f has mean zero, ∃g such that f = (I −Π) g. In fact,
g =

∑∞
n=0 Πnf .

Proof. Suppose that g =
∑∞
n=0 Πnf converges. Then

(I −Π) g = (I −Π)

∞∑
n=0

Πnf =

∞∑
n=0

Πnf −
∞∑
n=0

Πn+1f = Π0f = f.

So we just need to show the convergence of the infinite sum. However, it is well-
known that, when Π is the transition matrix of an irreducible aperiodic Markov
chain on a finite state space, Πnf converges exponentially, so the infinite sum
converges.

Theorem 3.3.3. If we define an inner product on the space of functions on X
by

〈a1, a2〉 :=
∑
x∈X

a1(x)a2(x)µ(x),
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for any functions a1, a2, then

σ2
0

b
= 2 〈f, g〉 − 〈f, f〉 ,

where f = (I −Π)g.

Proof. By the above remark,

Sn =

n−1∑
k=0

f(Xk)

=

n−1∑
k=0

[g(Xk)−Πg(Xk)]

= g(X0)− g(Xn) +

n∑
k=1

[g(Xk)−Πg(Xk−1)] .

Define

Mn :=

n∑
k=1

[g(Xk)−Πg(Xk−1)] .

We claim that Mn is a martingale. To prove this we note that

E (g(Xn+1)|Fn) = Πg(Xn),

by definition of the transition probability Π. Thus

E (Mn+1|Fn) = E

(
n+1∑
k=1

[g(Xk)−Πg(Xk−1)] |Fn

)

= E

(
n∑
k=1

[g(Xk)−Πg(Xk−1)] |Fn

)
+ E (g(Xn+1)|Fn)− E (Πg(Xn)|Fn)

= Mn + Πg(Xn)−Πg(Xn)

= Mn,

and so Mn is a martingale.
Let T = T1. Then

ST =

T1−1∑
k=0

f(Xk) =

R1−1∑
k=0

f(Xk) = Y1.

T is a stopping time and ST = g(X0)−g(XT )+MT = g(x0)−g(x0)+MT = MT .
So by optional stopping (Theorem 1.3.3),

E(ST ) = E(MT ) = E(M0) = 0.
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Now define another martingale

Nn := M2
n −

n−1∑
k=0

[
Πg2 − (Πg)

2
]

(Xk).

We confirm that this is indeed a martingale by the following calculations.
By definition of Mn and Nn,

E (Nn+1|Fn)−Nn = E
(
M2
n+1|Fn

)
−M2

n −Πg2(Xn) + [Πg(Xn)]
2
.

Now note that

E
(
M2
n+1|Fn

)
−M2

n = E
(
M2
n+1 −M2

n|Fn
)

= E
(

[(Mn+1 −Mn) +Mn]
2 −M2

n|Fn
)

= E
(
(Mn+1 −Mn)2|Fn

)
+ 2E ((Mn+1 −Mn)Mn|Fn)

= E
(
(Mn+1 −Mn)2|Fn

)
+ 2MnE (Mn+1|Fn)− 2M2

n

= E
(
(Mn+1 −Mn)2|Fn

)
+ 2M2

n − 2M2
n

since Mn is a martingale

= E
(
(Mn+1 −Mn)2|Fn

)
.

We then see that
E (Nn+1|Fn)−Nn = 0,

since

E
(
(Mn+1 −Mn)2|Fn

)
= E

(
[g(Xn+1)−Πg(Xn)]

2 |Fn
)

= E
(
g(Xn+1)2|Fn

)
− 2Πg(Xn)E (g(Xn+1)|Fn)

+ E
(

[Πg(Xn)]
2 |Fn

)
= Πg2(Xn)− 2Πg(Xn)Πg(Xn) + [Πg(Xn)]

2

= Πg2(Xn)− [Πg(Xn)]
2
.

Thus Nn is a martingale, as claimed.
Using this we can calculate

E(S2
T ) = E(M2

T )

= E

(
NT +

T−1∑
k=0

[
Πg2 − (Πg)

2
]

(Xk)

)

= E(N0) + E

(
T−1∑
k=0

[
Πg2 − (Πg)

2
]

(Xk)

)
by optional stopping (Theorem 1.3.3)

= E

(
T−1∑
k=0

[
Πg2 − (Πg)

2
]

(Xk)

)
.
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We claim that

E

(
T−1∑
k=0

[
Πg2 − (Πg)

2
]

(Xk)

)
=
∑
x∈X

µ(x)

µ(x0)

[
Πg2(x)− (Πg(x))

2
]
.

Define F (x) := E

(
T∑
n=1

1 {Xn = x}

)
.

We will show that F (x) =
∑
y∈X

F (y)Π(y, x). Then, by uniqueness of the station-

ary distribution (Theorem 1.2.1), we must have F = Cµ for some constant C.
We have that

F (x) = E

( ∞∑
n=1

1 {Xn = x;T ≥ n}

)

=

∞∑
n=1

P (1 {Xn = x;T ≥ n})

=

∞∑
n=1

∑
y∼x

P (1 {Xn = x;Xn−1 = y;T ≥ n}) , where y ∼ x⇔ Π(y, x) > 0

= Π(0, x) +

∞∑
n=2

∑
y∼x
y 6=x0

P (1 {Xn = x;Xn−1 = y;T ≥ n})

= Π(x0, x) +

∞∑
n=2

∑
y∼x
y 6=x0

P (1 {Xn = x;Xn−1 = y;T ≥ n− 1}) ,

where the last line can be explained by considering the following two cases.
Suppose first that x = x0. Then

{Xn = x;Xn−1 = y;T ≥ n} = {Xn = x;Xn−1 = y;T = n}
= {Xn = x;Xn−1 = y;T ≥ n− 1} since y 6= x0.

Now suppose x 6= x0. Then clearly

{Xn = x;Xn−1 = y;T ≥ n} ⊆ {Xn = x;Xn−1 = y;T ≥ n− 1}

and, since y 6= x0,

{Xn = x;Xn−1 = y;T ≥ n− 1} ⊆ {Xn = x;Xn−1 = y;T ≥ n} ,

giving the required equality.
We next note that

P (Xn = x|Xn−1 = y;T ≥ n− 1) = Π(y, x).
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Then we have

F (x) = Π(x0, x) +

∞∑
n=2

∑
y∼x
y 6=x0

P (1 {Xn = x;Xn−1 = y;T ≥ n− 1})

= Π(x0, x)

+

∞∑
n=2

∑
y∼x
y 6=x0

P (Xn = x|Xn−1 = y;T ≥ n− 1)P (Xn−1 = y;T ≥ n− 1)

= Π(x0, x) +
∑
y∼x
y 6=x0

Π(y, x)

∞∑
n=2

P (Xn−1 = y;T ≥ n− 1)

= Π(x0, x) +
∑
y∼x
y 6=x0

Π(y, x)

∞∑
n=1

P (Xn = y;T ≥ n) .

But, since
∞∑
n=1

P (Xn = x0;T ≥ n) =

∞∑
n=1

P (T = n) = 1,

we get that

F (x) = Π(x0, x) +
∑
y∼x
y 6=x0

Π(y, x)

∞∑
n=1

P (Xn = y;T ≥ n)

=
∑
y∼x

Π(y, x)

∞∑
n=1

P (Xn = y;T ≥ n)

=
∑
y∼x

Π(y, x)F (y).

Therefore ∃C ∈ R such that F (x) = Cµ(x), ∀x ∈ X, by uniqueness of the
stationary distribution.
We have that F (x0) = 1, so C = 1

µ(x0) and

F (x) =
µ(x)

µ(x0)
for all x ∈ X.
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Our claim follows by noting that
∑
x∈X 1 {Xk = x} = 1 for any k. This gives

E

(
T−1∑
k=0

[
Πg2 − (Πg)

2
]

(Xk)

)
= E

(
T−1∑
k=0

∑
x∈X

1 {Xk = x}
[
Πg2 − (Πg)

2
]

(Xk)

)

= E

(∑
x∈X

[
Πg2 − (Πg)

2
]

(x)

T−1∑
k=0

1 {Xk = x}

)

=
∑
x∈X

[
Πg2(x)− (Πg(x))

2
]
E

(
T−1∑
k=0

1 {Xk = x}

)
=
∑
x∈X

[
Πg2(x)− (Πg(x))

2
]
F (x)

=
∑
x∈X

µ(x)

µ(x0)

[
Πg2(x)− (Πg(x))

2
]
.

Next, we calculate∑
x∈X

µ(x)Πg2(x) =
∑
y∈X

∑
x∈X

µ(x)Π(x, y)g2(y)

=
∑
y∈X

µ(y)g2(y) by stationarity

= 〈g, g〉 by definition of the inner product.

If we take ‖·‖ to be the norm induced by the inner product 〈·, ·〉, then we have∑
x∈X

µ(x)

µ(x0)

[
Πg2(x)− (Πg(x))

2
]

=
1

µ(x0)

(
‖g‖2 − ‖Πg‖2

)
.

We now see that

1

µ(x0)
=
∑
x∈X

µ(x)

µ(x0)
=
∑
x∈X

F (x) =
∑
x∈X

E

(
T∑
n=1

1 {Xn = x}

)

= E

(
T∑
n=1

∑
x∈X

1 {Xn = x}

)
= E(T ) = b.

So we have shown that

E(S2
T ) = E

(
T−1∑
k=0

[
Πg2 − (Πg)

2
]

(Xk)

)

=
∑
x∈X

µ(x)

µ(x0)

[
Πg2(x)− (Πg(x))

2
]

= b
(
‖g‖2 − ‖Πg‖2

)
.

63



In fact,
E(S2

T ) = bσ2
1 ,

where
σ2

1 := 2 〈f, g〉 − 〈f, f〉 .

We see this by the following calculation, noting that f = g −Πg.

‖g‖2 − ‖Πg‖2 = 〈g, g〉 − 〈Πg,Πg〉
= 〈g −Πg, g〉+ 〈Πg, g〉 − 〈Πg,Πg〉
= 〈f, g〉+ 〈Πg, g −Πg〉
= 〈f, g〉 − 〈−Πg, g −Πg〉
= 〈f, g〉 − 〈g −Πg, g −Πg〉+ 〈g, g −Πg〉
= 〈f, g〉 − 〈f, f〉+ 〈g, f〉
= 2 〈f, g〉 − 〈f, f〉 .

But σ2
0 = E(Y 2

1 ) = E(S2
T ) = bσ2

1 . So

σ2
0

b
= σ2

1 ,

as required.

We have shown in Theorems 3.3.1 and 3.3.3 that

Sn√
n

D−→ Z,

where Z ∼ N
(
0, σ2

1

)
, and

σ2
1 = 2 〈f, g〉 − 〈f, f〉 .

We have now proved a central limit theorem for Markov chains via two
different methods, under different conditions, one following Varadhan in [15]
and the other Tóth in [13]. In each case we derived a formula for the variance
of the limiting distribution. We now provide a calculation to check that the two
expressions for the variance agree, in the case where both theorems are valid.

Remark 3.3.3. Take {Xn} to be a stationary, irreducible, aperiodic Markov
chain with finite state space X, and let f ∈ L2 have mean zero under the unique
stationary distribution µ.
Then we have that ∃g such that f = (I −Π)g, and∑n

j=1 f(Xj)√
n

D−→ Z,

where Theorem 3.2.2 asserts that Z ∼ N
(
0, σ2

)
, with

σ2 = EPµ
[
(g(X1)− g(X0) + f(X0))

2
]
,
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and Theorems 3.3.1 and 3.3.3 assert that Z ∼ N
(
0, σ2

1

)
, with

σ2
1 = 2 〈f, g〉 − 〈f, f〉 .

We claim that σ2 = σ2
1 .

Proof. To prove this equality, we express both σ2 and σ2
1 in terms of g only and

we will see that we arrive at the same expression.
Let us first look at σ2. We see that

σ2 =
∑
x,y∈X

µ(x)Π(x, y) [g(y)− g(x) + f(x)]
2

=
∑
y∈X

g(y)2
∑
x∈X

µ(x)Π(x, y)

+
∑
x∈X

µ(x)
[
f(x)2 + g(x)2 − 2f(x)g(x)

] ∑
y∈X

Π(x, y)

+ 2
∑
x,y∈X

µ(x)Π(x, y)g(y) [f(x)− g(x)]

=
∑
y∈X

µ(y)g(y)2 +
∑
x∈X

µ(x)
[
f(x)2 + g(x)2 − 2f(x)g(x)

]
+ 2

∑
x,y∈X

µ(x)Π(x, y)g(y) [f(x)− g(x)] .

(3.3.6)

Now we use the relation f = (I −Π)g to find that∑
x∈X

µ(x)
[
f(x)2 + g(x)2 − 2f(x)g(x)

]
=
∑
x∈X

µ(x)

(g(x)−
∑
y∈X

Π(x, y)g(y)
)2

+ g(x)2

−2
(
g(x)−

∑
y∈X

Π(x, y)g(y)
)
g(x)


=
∑
x∈X

µ(x)

g(x)2 − 2
∑
y∈X

Π(x, y)g(x)g(y) +
∑
y∈X

Π(x, y)g(y)
∑
z∈X

Π(x, z)g(z)

+g(x)2 − 2g(x)2 + 2
∑
y∈X

Π(x, y)g(x)g(y)


=
∑
x∈X

µ(x)
∑
y∈X

Π(x, y)g(y)
∑
z∈X

Π(x, z)g(z).
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and

2
∑
x,y∈X

µ(x)Π(x, y)g(y) [f(x)− g(x)]

=
∑
x,y∈X

µ(x)Π(x, y)g(y)

[
g(x)−

∑
z∈X

Π(x, z)g(z)− g(x)

]
= −2

∑
x∈X

µ(x)
∑
y∈X

Π(x, y)g(y)
∑
z∈X

Π(x, z)g(z).

Substituting these expressions into (3.3.6), we get

σ2 =
∑
x∈X

µ(x)g(x)2 +
∑
x∈X

µ(x)
∑
y∈X

Π(x, y)g(y)
∑
z∈X

Π(x, z)g(z)

− 2
∑
x∈X

µ(x)
∑
y∈X

Π(x, y)g(y)
∑
z∈X

Π(x, z)g(z)

=
∑
x∈X

µ(x)g(x)2 −
∑
x∈X

µ(x)
∑
y∈X

Π(x, y)g(y)
∑
z∈X

Π(x, z)g(z).

We now consider σ2
1 . Recalling the definition 〈a, b〉 =

∑
x∈X a(x)b(x)µ(x), we

have

σ2
1 = 2

∑
x∈X

f(x)g(x)µ(x)−
∑
x∈X

f(x)2µ(x)

= 2
∑
x∈X

g(x)

g(x)−
∑
y∈X

Π(x, y)g(y)

µ(x)

−
∑
x∈X

g(x)−
∑
y∈X

Π(x, y)g(y)

2

µ(x)

= 2
∑
x∈X

µ(x)g(x)2 − 2
∑
x,y∈X

µ(x)Π(x, y)g(x)g(y)

−
∑
x∈X

µ(x)g(x)2 + 2
∑
x,y∈X

µ(x)Π(x, y)g(x)g(y)

−
∑
x∈X

µ(x)
∑
y∈X

Π(x, y)g(y)
∑
z∈X

Π(x, z)g(z)

=
∑
x∈X

µ(x)g(x)2 −
∑
x∈X

µ(x)
∑
y∈X

Π(x, y)g(y)
∑
z∈X

Π(x, z)g(z).

Thus we have verified that σ2 = σ2
1 .
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Chapter 4

Applications of the Markov
Chain CLT

In this chapter, we are going to give some examples of how one can apply the
theory which we have studied in this report.

4.1 Simple Random Walks on a Torus

Our first two examples concern a simple random walk. This process represents
a very simple physical situation: we have a particle which jumps either to the
left or right in each time step with given probabilities. However, we would not
be able to say anything about this using the well-known central limit theorem
for i.i.d. random variables (Theorem 3 of Chapter III, Section 3 in [11]).
Random walks are studied in many texts, and more discussion of this topic can
be found in [3] and [6], for example. We adapt some of the definitions and
results from Section 3.9 of [6], where simple random walks on the integers are
treated.
Let (Ω,F ,P) be a probability space. Let K ∈ N and consider a torus with K
sites; i.e. a line in one dimension with K discrete points labelled 0, 1, . . . ,K − 1
such that site K − 1 neighbours site 0, as shown in Figure 4.1.

4.1.1 The simple symmetric random walk

We consider a simple symmetric random walk {Xn} on the torus, which we
define as follows, adapting Grimmett and Stirzaker’s definition of a simple sym-
metric random walk on Z in [6].
Let Z1, Z2, . . . be a sequence of i.i.d. random variables such that
P(Zi = ±1) = 1

2 .

Let X0 = 0 and, for n ∈ N, define Xn =

n∑
i=1

Zi mod K.
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It is easy to see that {Xn} is a Markov chain, by adapting an argument from
Section 3.1 of [6], and that the chain has transition matrix Π, whose entries are
given by Πi,j = Π(i, j), with

Π(i, i+ 1) = Π(i, i− 1) =
1

2
for i = 1, 2, · · · ,K − 2

Π(0, 1) = Π(0,K − 1) =
1

2

Π(K − 1,K − 2) = Π(K − 1, 0) =
1

2
,

and all other entries zero.
The physical interpretation of this random walk is that we consider a particle
constrained to jump between K sites on a torus. The particle starts in state
0 and in each discrete time step the particle jumps one site to the left or one
site to the right with equal probability. We can see this in Figure 4.1, with
p = q = 1

2 .

Figure 4.1: We have created a figure to demonstrate a simple random walk on a
torus: The particle in red starts at site 0 and, in each time step, it jumps to the
right with probability p, or to the left with probability q, where p+ q = 1. The
case p = q = 1

2 corresponds to the simple symmetric random walk in Section
4.1.1 and the case p 6= q corresponds to an asymmetric random walk, which is
treated in Section 4.1.2.

Example 4.1.1. We are going to consider the local time at zero of the Markov
chain up to time n, which we define as

TK(n) :=

n∑
k=0

10(Xk).

The local time measures the amount of time the Markov chain spends in state
0 up to time n.
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We will prove a central limit theorem for this quantity, using Theorem 3.2.2.
In order to apply this theorem, the first condition which we need to check is
that the Markov chain is ergodic.
To do this, we will show that {Xn} has a unique stationary distribution µ.
Then, by Remark 2.5.1, we will have that {Xn} is ergodic.
One can easily calculate that if a probability measure µ on {0, 1, . . . ,K − 1}
satisfies

µ(i) =

K−1∑
j=0

Π(j, i)µ(j) ∀i = 0, 1, . . . ,K − 1,

then

µ(i) =
1

K
∀i ∈ {0, 1, . . . ,K − 1}. (4.1.2)

So µ as defined above is the unique stationary distribution for {Xn} and thus
the Markov chain is ergodic.
Now recall that, by Theorem 3.2.2, we have a central limit theorem for f(Xn) if
f has mean zero, f ∈ L2 and we can solve the equation (I −Π)U = f for some
U ∈ L2.
Recalling the definition of TK , we choose to set f to be the indicator function
centred so that it has mean zero under the stationary distribution µ of the
Markov chain; that is

f(0) = 1− 1

K

and f(i) = − 1

K
∀i = 1, · · · ,K − 1.

Then

TK(n)− E[TK(n)] =

n∑
k=0

f(Xk).

We claim that
TK(n)− E[TK(n)]√

n

D−→ Z,

where Z ∼ N
(
0, σ2

)
, with σ2 =

(K − 1)(K − 2)

3K2
.

Proof. We look for a solution to the equation (I − Π)U = f and see that U
must satisfy the following system of equations:

U(0)− 1

2
U(1)− 1

2
U(K − 1) = 1− 1

K
(4.1.4a)

−1

2
U(i− 1) + U(i)− 1

2
U(i+ 1) = − 1

K
for 1 ≤ i ≤ K − 2 (4.1.4b)

−1

2
U(0)− 1

2
U(K − 2) + U(K − 1) = − 1

K
. (4.1.4c)

The general solution to the homogeneous form of equation (4.1.4b) is
U(i) = A + Bi, and a particular solution to the inhomogeneous equation is
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U(i) =
i2

K
.

Therefore, the general solution to (4.1.4b) is

U(i) = A+Bi+
i2

K
.

We see that the following solution satisfies the required system of equations:

U(i) =
i2

K
− i ∀i = 0, 1, . . . ,K − 1.

Clearly

K−1∑
i=0

[U(i)]
2
µ(i) <∞, so that U ∈ L2. Therefore, by Theorem 3.2.2, we

have a central limit theorem

TK(n)− E[TK(n)]√
n

=

∑n
k=1 f(Xn)√

n

D−→ Z,

where Z ∼ N (0, σ2), for σ2 = EPµ
[
(U(X1)− U(X0) + f(X0))

2
]
.

We now need to calculate the variance, as follows.
Define G(i, j) := (U(j)− U(i) + f(i))

2
. Then

σ2 = EPµ
[
(U(X1)− U(X0) + f(X0))

2
]

=
∑
i,j

µ(i)Π(i, j)G(i, j)

=
1

K

∑
i,j

Π(i, j)G(i, j).

Substituting in the values of Π gives

σ2 =
1

2

1

K

{
K−2∑
i=1

[G(i, i+ 1) +G(i, i− 1)]

+G(0, 1) +G(0,K − 1) +G(K − 1,K − 2) +G(K − 1, 0)

}
.

We then substitute in our definition of G and simplify, resulting in

σ2 =
1

K

{
K−2∑
i=1

[
1− 2i

K

]2

+

[
1− 2

K

]2
}
.

We can simplify this further by noting

[
1− 2

K

]2

=

[
1− 2(K − 1)

K

]2

, so that

σ2 =
1

K

K−1∑
i=1

[
1− 2i

K

]2

=

K−1∑
i=1

1

K
− 4

K2

K−1∑
i=1

i+
4

K3

K−1∑
i=1

i2.
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Then, using standard summation formulae, we get

σ2 =
K − 1

K
− 4

K2

K(K − 1)

2
+

4

K3

(K − 1)K(2K − 1)

6

=
K − 1

K2

(
K − 2K +

2

3
(2K − 1)

)
=

(K − 1)(K − 2)

3K2
.

We now have a closed form for the variance, and we have shown that

TK(n)− E[TK(n)]√
n

D−→ Z,

where Z ∼ N
(
0, σ2

)
, with

σ2 =
(K − 1)(K − 2)

3K2
.

Remark 4.1.1. We see that as K →∞ we have the limit σ2 → 1
3 .

That is, as the number of sites on the torus increases to infinity, the limiting
distribution above tends to N

(
0, 1

3

)
.

It is of interest to ask what happens if we switch the order in which we take
the limits, first letting K → ∞, then taking the time n → ∞. This scenario
corresponds to looking for a central limit theorem for the local time of a simple
symmetric random walk on the integers.
It is known that in this case the limiting distribution is actually the distribution
of |ξ|, where ξ ∼ N (0, 1), as proved on slide 12 of [14]. This distribution on
the non-negative real numbers is quite different from the distribution N

(
0, 1

3

)
,

which is non-zero on the whole real line.
Thus we cannot switch the order in which the limits are taken without affecting
the result.

4.1.2 Asymmetric random walks

In the previous section, we showed that we have a central limit theorem for the
local time of a simple symmetric random walk on a torus. We can treat the
asymmetric case in the same way.
Let p, q ∈ (0, 1), p 6= q. Let {Xn} now be the simple random walk defined as
follows, where again we adapt the definition of a simple random walk on the
integers from [6].
Let Z1, Z2, . . . be a sequence of i.i.d. random variables such that P(Zi = 1) = p
and P(Zi = −1) = q, for all i ∈ N.
As in the symmetric case, let X0 = 0 and, for n ∈ N, define

Xn =

n∑
i=1

Zi mod K.

71



Then, as before, {Xn} is a Markov chain with transition matrix Π, whose entries
are now given by Πi,j = Π(i, j), with

Π(i, i+ 1) = p for i = 0, 1, . . . ,K − 2

Π(K − 1, 0) = p

Π(i, i− 1) = q for i = 1, 2, . . . ,K − 1

Π(0,K − 1) = q,

and all other entries zero.
This random walk represents a similar physical situation to the symmetric case,
but now the particle jumps to the right with probability p and to the left with
probability q, where these probabilities are unequal. This is also shown in Figure
4.1.

Example 4.1.2. Again we consider the local time at zero,

TK(n) =

n∑
k=0

10(Xk).

It is straight forward to check that the Markov chain has a unique stationary
distribution, µ, which is the same as in (4.1.2) for the symmetric case:

µ(i) =
1

K
∀i = 0, 1, . . .K − 1.

Thus the chain is ergodic, by Remark 2.5.1.
As before, we set f to be the function defined by

f(0) = 1− 1

K

and f(i) = − 1

K
∀i = 1, · · · ,K − 1,

so that TK(n)− E[TK(n)] =

n∑
k=0

f(Xk).

We claim that
TK(n)− E[TK(n)]√

n

D−→ Z,

where Z ∼ N
(
0, σ2

)
for some σ > 0.

Proof. To prove this, we will use Theorem 3.2.2 once again. Thus, we want to
find a solution to the equation (I − Π)U = f . We see that such a solution U
must satisfy the system of equations below:

U(0)− pU(1)− qU(K − 1) = 1− 1

K
, (4.1.7a)

−qU(i− 1) + U(i)− pU(i+ 1) = − 1

K
, for 1 ≤ i ≤ K − 2, (4.1.7b)

−qU(0)− pU(K − 2) + U(K − 1) = − 1

K
. (4.1.7c)
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We find that the general solution to (4.1.7b) is

U(i) = A+B

(
q

p

)i
+

i

K(p− q)
.

After some manipulation of the equations, it turns out that the system of equa-
tions is solved by the function U defined by

U(i) =
pK−iqi

(p− q) (pK − qK)
+

i

K(p− q)
,

for all i = 0, 1, . . . ,K − 1.

It is clear that U ∈ L2; i.e.

K−1∑
i=0

[U(i)]
2
µ(i) <∞.

Thus, by Theorem 3.2.2, we have a central limit theorem

TK(n)− E[TK(n)]√
n

D−→ Z,

where Z ∼ N
(
0, σ2

)
for

σ2 = EPµ
[
(U(X1)− U(X0) + f(X0))

2
]
.

We can now compute the variance, in a similar way to our calculation in the
symmetric case in Section 4.1.1. The actual form of σ2 is complicated, so we
only describe its asymptotic behaviour here. We find that σ2 is asymptotically
of the order 1

K . There is a coefficient which blows up as p → 1
2 , so this agrees

with our calculations for the symmetric case, in Remark 4.1.1, where we see
that the variance is asymptotically constant.

4.2 A Queuing Problem

Another Markov chain which we can study with the tools from Chapter 3 is the
one suggested by Varadhan in Exercise 6.15 of [15]. Let {Xn} be a Markov chain
which takes values on the non-negative integers and has transition probabilities
given by

Π(x, y) =


1
2 for x = y ≥ 0
1−δ

4 for y = x+ 1, x ≥ 1
1+δ

4 for y = x− 1, x ≥ 1
1
2 for x = 0, y = 1,

for some δ ∈ (0, 1).
This Markov chain could model the length of a queue, where in each discrete time
step there are three possibilities when the queue is not empty: with probability
1
2 the queue remains unchanged, with probability greater than 1

4 one person
leaves the queue, or with probability less than 1

4 one person joins the queue.
When the queue is empty, the queue either remains empty or grows to one with
equal probabilities.
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Example 4.2.1. An interesting quantity to consider is the amount of time
for which the queue is empty; i.e. the number of times k at which Xk = 0.
Therefore, as in the previous examples, we will look for a central limit theorem
for the local time of the Markov chain at zero, defined by

T (n) =

n∑
k=0

10(Xk).

We claim that
T (n)− EPµ [T (n)]√

n

D−→ Z,

where Z ∼ N
(

0,
2− δ

(1 + δ)2

)
.

Proof. As in our previous two examples, we wish to apply Theorem 3.2.2. We
first need to show that {Xn} is ergodic and, in order to do this, we prove that
the Markov chain has a unique stationary distribution.

We need to find µ such that, for all x ∈ N ∪ {0}, µ(x) =
∑

y∈N∪{0}

Π(y, x)µ(y);

that is, µ must satisfy

µ(0) =
1

2
µ(0) +

1 + δ

4
µ(1) (4.2.1a)

µ(1) =
1

2
µ(0) +

1

2
µ(1) +

1 + δ

4
µ(2) (4.2.1b)

µ(x) =
1− δ

4
µ(x− 1) +

1

2
µ(x) +

1 + δ

4
µ(x+ 1), for x = 2, 3, . . . . (4.2.1c)

We also have the constraint
∞∑
x=0

µ(x) = 1.

We find that the general solution to (4.2.1c) is

µ(x) = A+B

(
1− δ
1 + δ

)x
, for x = 2, 3, . . . ,

and the constraint (4.2) gives us that A = 0.
We can then see that we have the following unique solution to the system of
equations (4.2.1) and (4.2):

µ(x) =

{
δ

1+δ for x = 0,

2δ (1−δ)x−1

(1+δ)x+1 for x = 1, 2, . . . .

Therefore, by Remark 2.5.1, {Xn} is ergodic. Let us set f to be the centred
indicator function on the state 0,

f = 10 − Eµ [10]

= 10 − µ(0)

= 10 −
δ

1 + δ
.
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That is

f(x) =

{
1

1+δ for x = 0

− δ
1+δ for x = 1, 2, . . . .

Then T (n)− E[T (n)] =

n∑
k=0

f(Xk).

We next need to look for a solution U to the equation (I − Π)U = f , so that
we can apply Theorem 3.2.2. U must satisfy the system of equations

∞∑
y=0

(δ0,y −Π(0, y))U(y) =
1

1 + δ
and

∞∑
y=0

(δx,y −Π(x, y))U(y) = − δ

1 + δ
for x = 1, 2, . . . ,

which is equivalent to

1

2
U(0)− 1

2
U(1) =

1

1 + δ
and

1

2
U(x)− 1 + δ

4
U(x− 1)− 1− δ

4
U(x+ 1) = − δ

1 + δ
for x = 1, 2, . . . .

One can show that the solution to this system of equations is

U(x) = − 2x

1 + δ
for all x = 0, 1, 2, . . . .

We have that U ∈ L2, since
∞∑
x=0

[U(x)]
2
µ(x) = 8δ(1 + δ)4

∞∑
x=1

x2

(
1− δ
1 + δ

)x−1

<∞,

recalling that δ ∈ (0, 1).
Thus, by Theorem 3.2.2, we have a central limit theorem for the local time at
zero:

T (n)− E[T (n)]√
n

=

∑n
k=0 f(Xk)√

n

D−→ Z,

where Z ∼ N (0, σ2) and the variance can be calculated using the now familiar
formula

σ2 = EPµ
[
(U(X1)− U(X0) + f(X0))

2
]
.

After some computation, the variance comes out as

σ2 =
2− δ

(1 + δ)2
.

We have therefore shown that we have

T (n)− EPµ [T (n)]√
n

D−→ Z,

where Z ∼ N
(

0,
2− δ

(1 + δ)2

)
.
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Conclusion

In Chapter 3, our most general result (Theorem 3.2.2) showed that there is a

central limit theorem for

n∑
k=1

f(Xk)√
n

when {Xn} is an ergodic Markov chain with

transition matrix Π, under some conditions. Namely, we required that the chain
has a countable state space in R and f is a mean zero square-integrable function
such that (I−Π)U = f , for some U ∈ L2. Several extensions of this result have
been proved, and perhaps the most notable of these is the 1984 paper of Kipnis
and Varadhan [7].

In the examples of simple random walks on a torus which we discussed in
Section 4.1, we were modelling a situation of a single particle moving around
K sites on a torus. We were able to deal with this example using our Theorem
3.2.2. If we suppose that we are in a similar physical situation, but with some of
the sites on the torus occupied by other particles and our jumping particle only
able to move to unoccupied sites, then we can no longer handle this situation
with the tools that we have studied in this report.

The situation described above is an example of what is known as a simple ex-
clusion process. These processes are explained further by Komorowski, Landim
and Olla in Part II of [8]. In [7], the authors extend the Markov chain central
limit theorem and apply their results to symmetric simple exclusion processes,
under some conditions. Further extensions to this work have been achieved
more recently; for example, in a 2004 paper [2], Bernardin considers asymmet-
ric simple exclusion processes in one and two dimensions. More results on the
topic of simple exclusion processes are collected in Part II of the 2012 book [8].

Another distinct application area of central limit theorems for Markov chains
is Markov chain Monte Carlo. This subject is explained in Gamerman and
Lopes’ book [4], and here we outline some of the main ideas of the subject,
summarising material from that text. Monte Carlo integration is a method for
estimating an integral by using a random sample. The idea is that if we have
a large random sample, for which a law of large numbers applies, and we take
the sample mean of a function, then this quantity approximates the integral
of the function with respect to the distribution of the sample. If we have a
central limit theorem for the random sample, then we can control the error of
the approximation.

For more complicated and high-dimensional distributions, it can be difficult
to generate a random sample which has a given distribution. Markov chain
Monte Carlo methods provide a solution to this problem. If we can construct
a Markov chain which converges to its stationary distribution, and whose sta-
tionary distribution is equal to the distribution in which we are interested, then
at large times, the random variables in the chain are approximately distributed
according to the distribution of interest. If, moreover, we have a law of large
numbers and a central limit theorem for the Markov chain, then we can take
values of the chain after it has been running for a specified large time and use
these as a random sample in Monte Carlo integration.
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Markov chain Monte Carlo is frequently applied in statistics, most often to
perform inference on the posterior distributions in Bayesian models, as explained
in [4]. A good example of this is given in [12]. Markov chain Monte Carlo
methods also have wider applications. For example, in [5] the authors use
Markov chain Monte Carlo to estimate coefficients, which cannot be explicitly
computed, in the theory of elliptic partial differential equations.

These are just a few examples of how the work which we have presented in
this report can be extended and applied to diverse areas of mathematics.
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