
Optimal Control of Martingales in a Radially
Symmetric Environment

Ben Robinson
9th April 2019

University of Bath
Joint work with Alex Cox



Problem Statement

Minimise
E
[∫ τD

0
f(Xs) ds+ g(XτD)

]
over all continuous martingales X with unit quadratic variation,
defined on some bounded domain

D ⊂ Rd.



Motivation

The Martingale Optimal Transport (MOT) problem is to find

V(µ0, µ1) = inf
π∈ΠM (µ0,µ1)

∫
Rd

c(x, y) dπ(x, y).

• d = 1:
• MOT is well-understood
• Any martingale is a time change of Brownian motion

• d ≥ 2:
• Structure of martingale transports is more complicated
• Some recent progress has been made - e.g.

[Lim, 2014, Ghoussoub et al., 2019]
• We attempt to understand solutions to martingale control

problems



Problem Formulation



Problem Formulation

We seek the value function

v(x) := inf
P∈Px

EP
[∫ τ

0
f(Xs) ds+ g(Xτ )

]
,

where Px is the set of probability measures on Ω× B(R+, U)Ω = C(R+, D) - path space
U = {σ ∈ Rd,d : Tr(σσ⊤) = 1} - control set

under which

t 7→ ϕ(Xt)− ϕ(X0)−
1

2

∫ t

0
Tr(D2ϕ(Xs)νsν

⊤
s ) ds

is a martingale for any ϕ ∈ C2(D) with the restriction that
P(X0 = x) = 1 for all P ∈ P.

We will refer to this as the weak formulation.



Assumptions

v(x) := inf
P∈Px

EP
[∫ τ

0
f(Xs) ds+ g(Xτ )

]
,

1. D = BR(0) ⊂ Rd

2. f radially symmetric; i.e. f(x) = f̃(|x|)
3. g constant
4. f continuous
5. f̃ ′(r+) exists for all r ≥ 0 with limr→0 rf̃

′(r) = 0



Strong Formulation

Under the above conditions, the problem is equivalent to the
following strong formulation [El Karoui and Tan, 2013].

Fix a probability space on which a d-dimensional Brownian motion
B is defined, with natural filtration F.

Find
vS(x) := inf

σ∈U
Ex

[∫ τ

0
f(Xσ

s ) ds+ g(Xσ
τ )

]
,

where U is the set of F-progressively measurable U -valued
processes and

dXt = σt dBt for all σ ∈ U ,

U = {σ ∈ Rd,d : Tr(σσ⊤) = 1}.



Optimal Behaviour



Radial Motion

Optimal behaviour for f̃ increasing



Radial Motion

• Control: σt =
1

|Xt|
[Xt; 0; . . . ; 0]

• Radius process: dRt = dWt

• Generator: Lu(r) = 1

2
u′′(r)

Sample path of Xt
Sample path of Rt



Tangential Motion

Optimal behaviour for f̃ decreasing



Tangential Motion

• Control: σt =
1

|Xt|
[X⊥

t ; 0; . . . ; 0]

• Radius process:
dRt =

1

2Rt
dt

• Generator: Lu(r) = 1

2r
u′(r)

Sample path of Xt
Sample path of Rt



Two optimal behaviour regimes

(a) Sample path of radial
motion

(b) Sample path of tangential
motion

(c) Sample path of radius
process for (a)

(d) Sample path of radius
process for (b)



Construction of Solution

Claim that the optimal strategy is to switch between radial and
tangential motion.

Then v(x) = ṽ(|x|), where ṽ solvesmin
{
1
2 ṽ

′′(r), 1
2r ṽ

′(r)
}
= −f̃(r), r ∈ (0, r),

ṽ(R) = g.

So to minimise
ṽ(r) = g −

∫ R

r
ṽ′(s) ds,

we seek to maximise ṽ′(r).



Construction of Solution

Maximise ṽ′, where ṽ solves

min

{
1

2
ṽ′′(r),

1

2r
ṽ′(r)

}
= −f̃(r).

ṽ′′(r) = −2f̃(r) ṽ′(r) = −2rf̃(r)

1st order
ṽ′′(r) = −2f̃(r)

0 r1 s1

Switching point is determined by

r1 = inf{s > s0 : ṽ
′(s) < −2sf̃(s)}.

By continuity of f , we have smooth fit at r1, even though the local
time is zero.



Construction of Solution

Maximise ṽ′, where ṽ solves

min

{
1

2
ṽ′′(r),

1

2r
ṽ′(r)

}
= −f̃(r).

ṽ′′(r) = −2f̃(r) ṽ′(r) = −2rf̃(r) ṽ′′(r) = −2f̃(r)

2nd order0 r1 s1

We need to enforce smooth fit at s1, and we need a 2nd order
condition to determine the switching point:

s1 = inf{r > s0 : ṽ
′′(r) < −2f̃(r)}.



Value Function

Continue in this way to construct a sequence of switching points

r0 < s0 < . . . < ri < si < . . . .

Solve the ODEs by imposing smooth fit at points si and
continuous fit at points ri, si.

We arrive at the following candidate value function:

V (x) =−2
∫ |x|
si−1

∫ s
si−1

f̃(t) dt ds− 2 |x| si−1f̃(si−1) + Cu
i , |x| ∈ [si−1, ri],

−2
∫ |x|
ri

sf̃(s) ds+ Cw
i , |x| ∈ [ri, si].



Proof of Optimality

We use the theory of viscosity solutions to show optimality:

1. The value function v is continuous and M -convex
2. v satisfies a dynamic programming principle
3. v is a viscosity solution toinfσ∈U Tr(D2vσσ⊤) = −f in D

v = g on ∂D
(HJB)

4. The candidate function V solves (HJB)
5. Comparison holds for (HJB)

Hence v = V .



Relaxing Assumptions



Exploding Cost at Origin

We now relax the assumptions:

v(x) := inf
P∈Px

EP
[∫ τ

0
f(Xs) ds+ g(Xτ )

]
,

1. D = BR(0)

2. f radially symmetric; i.e. f(x) = f̃(|x|)
3. g constant
4. f continuous
5. f̃ ′(r+) exists for all r ≥ 0 with limr→0 rf̃

′(r) = 0



Exploding Cost at Origin

We now relax the assumptions:

v(x) := inf
P∈Px

EP
[∫ τ

0
f(Xs) ds+ g(Xτ )

]
,

1. D = BR(0)

2. f radially symmetric; i.e. f(x) = f̃(|x|)
3. g constant
4. f continuous D \ {0} and limr→0 r

β f̃(r) = α, for some α, β

5. f̃ ′(r+) exists for all r ≥ 0



Exploding Cost at Origin

Growth condition:
lim
r→0

rβ f̃(r) = α ≤ 0.

Radial motion is optimal near the origin and:

• For β < 1, v = vS = V > −∞
• For β ≥ 1, v = vS ≡ −∞

Prove using Green’s function for dRt = dWt, 0 < r < η:

Er

[∫ τη

0
f̃(Rs) ds

]
∼

∫ η

−η
f̃(ξ) dξ +

∫ η

−η
ξf̃(ξ) dx.



Exploding Cost at Origin

Growth condition:
lim
r→0

rβ f̃(r) = α > 0.

Conjecture: We can construct a martingale X such that

• X0 = 0

• Rt = |Xt| satisfies
dRt =

1

2Rt
dt

but X will not be adapted to a Brownian filtration.

Hence we expect the strong and weak control problems to differ.



Exploding Cost at Origin

Growth condition:
lim
r→0

rβ f̃(r) = α > 0.

Conjecture:

• For β < 1, v = vS < ∞;
• For β ∈ [1, 2), v < ∞ but vS(0) = ∞;
• For β ≥ 2, v(0) = vS(0) = ∞, v(x), vS(x) < ∞, x ̸= 0.

Idea is that if dRt =
1

2Rt
dt, then

Er

[∫ τη

0
f̃(Rs) ds

]
= 2

∫ η

0
ξf̃(ξ) dξ



Discontinuous Cost

Fix R0 ∈ (0, R) and define

f(x) =

0, |x| ≤ R0

−1, |x| ∈ (R0, R).

Tangential motion is optimal and the value function is

v(x) =

R2
0 −R2, |x| ≤ R0

|x|2 −R2, |x| ∈ (R0, R).

Prove using the Itô-Tanaka formula.

v is a viscosity solution to (HJB) as in [Cattiaux et al., 2008].

However, there is no uniqueness theory for viscosity solutions with
discontinuous data.



Summary

• Optimal behaviour is either radial or tangential motion
• Switch between 1st & 2nd order behaviour with smooth fit
• Identified growth condition at origin to give finite value
• Will investigate constructing weak solution at origin
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