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The data

Several data sources
Most complete and reliable is data from satellites, collected by passive
microwaves
This is available from 1979-Present

(a) February mean (b) August mean

Figure: Mean ice concentrations for period 1981-1990.



The data

Further back in time we only have observations of the ice edge
Eventually only have point observations

Figure: Ship observations from 1922-1953



The Problem

Our aim is to develop a model for concentrations of sea ice, which can be
used to reconstruct historical sea ice concentrations and quantify
uncertainty.

Challenges are:

Multiple data sources, more sparse further back in time

Need to account for

seasonality
long-time variation
spatial correlations
physical constratints

Concentrations constrained between 0 and 1
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Principal Component Analysis

Use singular value decomposition to identify main causes of variation
around the mean:

Columns of X contain ice concentrations for each month at all
locations not on land, with row means subtracted

Singular value decomposition is X = UΣV T

Left singular vectors - i.e. columns of U - give principal components

Squares of diagonal entries of Σ are proportional to variance in
direction of each principal component



Principal Component Analysis

Figure: The first, second and fifth principal components.



A Simple Model

g(y(s, t)) = µ(s, τ) + U(s)β(t) + z(s, t) + ε(s, t),

Var[z(s, t)] = σz(s, τ)2,
where t is year and month, τ is month within year and g is defined by
g(y) = log(y)− log(1− y), with inverse
g−1(y) = (1 + exp(−y))−1 ∈ (0, 1).
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A Simple Model

Observation level:

g(y)|β, z , θε ∼ N (µ, σzΣz + Σε).

Latent process level:
z |θz ∼ N (0,Σz).

z is a Gaussian random field - at any collection of points in space,
distribution is jointly Gaussian

Uniquely determined by mean and covariance functions

Choose covariance to be:

Stationary - only depends on relative position of two points
Isotropic - only depends on Euclidean distance between two points



Gaussian Random Field

Simulate stationary isotropic gaussian random field, using SPDE model in
INLA:

(κ2 −∆)
α
2 z(u) =W(u).

Figure: Stationary isotropic GRF (left) and GRF multiplied by standard deviation
at each point in space (right)



February

(a) Observed sea ice concentrations
February 1984.

(b) Simulated February sea ice
concentrations.

Figure: Southern hemisphere sea ice concentrations for February.



August

(a) Observed sea ice concentrations
August 1984.

(b) Simulated August sea ice
concentrations.

Figure: Southern hemisphere sea ice concentrations for August.



Changing the model

Current model is unable to predict changes in ice edge different from
the data set

Change what we model to concentration at a distance from coastline

Express the distance from the coastline d as a function of the ice
concentration c and the point on the coastline x ; e.g.
d(x , c) = sup{d : (ice concentration at the point x + d · n) ≥ c}.
Coastline of Antarctica is not convex, so need to look at physical
properties to determine direction



The Arctic

Geographical features around the Arctic are more complicated:

Figure: Observed ice concentrations in the northern hemisphere January 1981,
where white space indicates land.



Improving the model

Check model by using one
decade of data to predict
another, and vice versa

Assign prior distributions to
parameters and use Bayesian
inference

Model no longer jointly
Gaussian means new
computational challenges

yβ

U

µ

ΣβθΣβ

zQz

σz θε

θµ

θU

θQz

Qσz
θQσz


